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Preface

If you use voice recognition on an Android phone or Google Translate on
the Internet, you have communicated with neural networks' trained by
deep learning. In the last few years, deep learning has generated enough
profit for Google to cover the costs of all its futuristic projects at Google X,
including self-driving cars, Google Glass, and Google Brain.> Google was
one of the first Internet companies to embrace deep learning; in 2013, it
hired Geoffrey Hinton, the father of deep learning, and other companies
are racing to catch up.

The recent progress in artificial intelligence (AI) was made by reverse
engineering brains. Learning algorithms for layered neural network mod-
els are inspired by the way that neurons communicate with one another
and are modified by experience. Inside the network, the complexity of the
world is transformed into a kaleidoscope of internal patterns of activity that
are the ingredients of intelligence. The network models that I worked on in
the 1980s were tiny compared with today’s models, which now have mil-
lions of artificial neurons and which are dozens of layers deep. What made
it possible for deep learning to make big breakthroughs on some of the
most difficult problems in artificial intelligence was persistence, big data,
and a lot more computer power.

We're not good at imagining the impact of a new technology on the
future. Who could have predicted in 1990, when the Internet went com-
mercial, what impact it would have on the music business? On the taxi
business? On political campaigns? On almost all aspects of our daily lives?
There was a similar failure to imagine how computers would change our
lives. Thomas J. Watson, the president of IBM, is widely quoted as saying in
1943: “I think there is a world market for maybe five computers.”* What's
hard to imagine are the uses to which a new invention will be put, and
inventors are no better than anyone else at predicting what those uses will
be. There is a lot of room between the utopian and doomsday scenarios that
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are being predicted for deep learning and Al, but even the most imagina-
tive science fiction writers are unlikely to guess what their ultimate impact
will be.

The first draft of The Deep Learning Revolution was written in a few
focused weeks after hiking in the Pacific Northwest and meditating on the
remarkable recent shift in the world of artificial intelligence, which had its
origin many decades earlier. It is a story about a small group of researchers
challenging an AI establishment that was much better funded and at the
time the “only game in town.” They vastly underestimated the difficulty of
the problems and relied on intuitions about intelligence that proved to be
misleading.

Life on earth is filled with many mysteries, but perhaps the most
challenging of these is the nature of intelligence. Nature abounds with
intelligence in many forms, from humble bacterial to complex human
intelligence, each adapted to its niche in nature. Artificial intelligence will
also come in many forms that will take their particular places on this spec-
trum. As machine intelligence based on deep neural networks matures, it
could provide a new conceptual framework for biological intelligence.

The Deep Learning Revolution is a guide to the past, present, and future
of deep learning. Not meant to be a comprehensive history of the field, it
is rather a personal view of key conceptual advances and the community
of researchers who made them. Human memory is fallible and shifts with
every retelling of a story, a process called “reconsolidation.” The stories in
this book stretch over forty years, and even though some are as vivid to me
as if they occurred yesterday, I am well aware that the details have been
edited by my memory’s retellings over time.

Part I provides the motivation for deep learning and the background
needed to understand its origins; part II explains learning algorithms in sev-
eral different types of neural network architectures; and part III explores the
impact that deep learning is having on our lives and what impact it may
have in years to come. But, as the New York Yankees’ philosopher Yogi Berra
once said: “It’s tough to make predictions, especially about the future.” Text
boxes in eight of the chapters to follow provide technical background to
the story; timelines at the beginning of the three parts keep track of events
that bear on that story and extend over sixty years.
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Timeline

1956—The Dartmouth Artificial Intelligence Summer Research Project
gave birth to the field of Al and motivated a generation of scientists to
explore the potential for information technology to match the capabilities
of humans.

1962—Frank Rosenblatt published Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, which introduced a learning algorithm
for neural network models with a single layer of variable weights—the pre-
cursor of today’s learning algorithms for deep neural network models.

1962—David Hubel and Torsten Wiesel published “Receptive Fields, Bin-
ocular Interaction and Functional Architecture in the Cat’s Visual Cortex,”
which reported for the first time the response properties of single neurons
recorded with a microelectrode. Deep learning networks have an architec-
ture similar to the hierarchy of areas in the visual cortex.

1969—Marvin Minsky and Seymour Papert published Perceptrons, which
pointed out the computational limitations of a single artificial neuron and
marked the beginning of a neural network winter.

1979—Geoffrey Hinton and James Anderson organized the Parallel Mod-
els of Associative Memory workshop in La Jolla, California, which brought
together a new generation of neural network pioneers and led to publica-
tion of Hinton and Anderson'’s collected volume by the same title in 1981.

1987—The First Neural Information Processing Systems (NIPS) Confer-
ence and Workshop was held at the Denver Tech Center, bringing together
researchers from many fields.






1 The Rise of Machine Learning

Not too long ago it was often said that computer vision could not compete
with the visual abilities of a one-year-old. That is no longer true: computers
can now recognize objects in images about as well as most adults can, and
there are computerized cars on the road that drive themselves more safely
than an average sixteen-year-old could. And rather than being told how to
see or drive, computers have learned from experience, following a path that
nature took millions of years ago. What is fueling these advances is gushers
of data. Data are the new oil. Learning algorithms are refineries that extract
information from raw data; information can be used to create knowledge;
knowledge leads to understanding; and understanding leads to wisdom.
Welcome to the brave new world of deep learning.'

Deep learning is a branch of machine learning that has its roots in math-
ematics, computer science, and neuroscience. Deep networks learn from
data the way that babies learn from the world around them, starting with
fresh eyes and gradually acquiring the skills needed to navigate novel envi-
ronments. The origin of deep learning goes back to the birth of artificial
intelligence in the 1950s, when there were two competing visions for how
to create an Al: one vision was based on logic and computer programs,
which dominated Al for decades; the other was based on learning directly
from data, which took much longer to mature.

In the twentieth century, when computers were puny and data stor-
age was expensive by today’s standards, logic was an efficient way to solve
problems. Skilled programmers wrote a different program for each problem,
and the bigger the problem, the bigger the program. Today computer power
and big data are abundant and solving problems using learning algorithms
is faster, more accurate, and more efficient. The same learning algorithm
can be used to solve many difficult problems; its solutions are much less
labor intensive than writing a different program for every problem.
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Learning How to Drive

The $2 million cash prize for the Defense Advanced Research Projects
Agency (DARPA) Grand Challenge in 2005 was won by Stanley, a self-driving
car instrumented by Sebastian Thrun’s group at Stanford, who taught it
how to navigate across the desert in California using machine learning.
The 132-mile course had narrow tunnels and sharp turns, including Beer
Bottle Pass, a winding mountain road with a sheer drop-off on one side and
a rock face on the other (figure 1.1). Rather than follow the traditional Al
approach by writing a computer program to anticipate every contingency,
Thrun drove Stanley around the desert (figure 1.2), and it learned for itself
to predict how to steer based on sensory inputs from its vision and distance
Sensors.

Thrun later founded Google X, a skunk works for high-tech projects,
where the technology for self-driving cars was developed further. Google’s
self-driving cars have since logged 3.5 million miles driving around the
San Francisco Bay Area. Uber has deployed a fleet of self-driving cars in
Pittsburgh. Apple is moving into self-driving cars to extend the range of

Figure 1.1
Sebastian Thrun with Stanley, the self-driving automobile that won the 2005 DAR-
PA Grand Challenge. This breakthrough jump-started a technological revolution in

transportation. Courtesy of Sebastian Thrun.
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Figure 1.2
Beer Bottle Pass. This challenging terrain was near the end of the 2005 DARPA
Grand Challenge for a vehicle to drive unassisted by a human through a 132-mile
off-road desert course. A truck in the distance is just beginning the climb. Courtesy
of DARPA.

products that its operating systems control, hoping to repeat its successful
foray into the cell phone market. Seeing a business that had not changed
for 100 years transformed before their eyes, automobile manufacturers are
following in their tracks. General Motors paid $1 billion for Cruise Auto-
mation, a Silicon Valley start-up that is developing driverless technology,
and invested an additional $600 million in 2017 in research and develop-
ment.” In 2017, Intel purchased Mobileye, a company that specializes in
sensors and computer vision for self-driving cars, for $15.3 billion dollars.
The stakes are high in the multitrillion-dollar transportation sector of the
economy.

Self-driving cars will soon disrupt the livelihoods of millions of truck
and taxi drivers. Eventually, there will be no need to own a car in a city
when a self-driving car can show up in a minute and take you safely to your
destination, without your having to park it. The average car today is only
used 4 percent of the time, which means it needs to be parked somewhere
96 percent of the time. But because self-driving cars can be serviced and
parked outside cities, vast stretches of city land now covered with parking
lots can be repurposed for more productive uses. Urban planners are already
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thinking ahead to the day when parking lots become parkland.’ Parking
lanes along streets can become real bike lanes. Many other car-related busi-
nesses will be affected, including auto insurance agencies and body shops.
No more speeding or parking tickets. There will be fewer deaths from drunk
drivers and from drivers falling asleep at the wheel. Time wasted commut-
ing to work will be freed for other purposes. According to the U.S. Census
Bureau, in 2014, 139 million Americans spent an average of 52 minutes
commuting to and from work each workday. That amounts to 29.6 bil-
lion hours per year, or an astounding 3.4 million years of human lives that
could have been put to better use.* Highway capacity will be increased by
a factor of four by caravaning.’ And, once developed and widely used, self-
driving cars that can drive themselves home without a steering wheel will
put an end to grand theft auto. Although there are many regulatory and
legal obstacles in the way, when self-driving cars finally become ubiquitous,
we will indeed be living in a brave new world. Trucks will be the first to
become autonomous, probably in 10 years; taxis in 15 years and passenger
cars in 15 to 25 years from start to finish.

The iconic position that cars have in our society will change in ways
that we cannot imagine and a new car ecology will emerge. Just as the
introduction of the automobile more than 100 years ago created many new
industries and jobs, there is already a fast-growing ecosystem being created
around self-driving cars. Waymo, the self-driving spin-off from Google, has
invested $1 billion over 8 years and has constructed a secretive testing facil-
ity in California’s central valley with a 91-acre fake town, including fake
bicycle riders and fake auto breakdowns.® The goal is to broaden the train-
ing data to include special and unusual circumstances, called edge cases.
Rare driving events that occur on highways often lead to accidents. The dif-
ference with self-driving cars is that when one car experiences a rare event,
the learning experience will propagate to all other self-driving cars, a form
of collective intelligence. Many similar test facilities are being constructed
by other self-driving car companies. These create new jobs that did not exist
before, and new supply chains for the sensors and lasers that are needed to
guide the cars.’

Self-driving cars are just the most visible manifestation of a major shift
in an economy being driven by information technology (IT). Information
flows through the Internet like water through city pipes. Information accu-
mulates in massive data centers run by Google, Amazon, Microsoft, and
other IT companies that require so much electrical power that they need
to be located near hydroelectric plants, and streaming information gener-
ates so much heat that it needs rivers to supply the coolant. In 2013, data
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centers in the United States consumed 10 million megawatts, equivalent
to the power generated by thirty-four large power plants.® But what is now
making an even bigger impact on the economy is how this information is
used. Extracted from raw data, the information is being turned into knowl-
edge about people and things: what we do, what we want, and who we are.
And, more and more, computer-driven devices are using this knowledge to
communicate with us through the spoken word. Unlike the passive knowl-
edge in books that is externalized outside brains, knowledge in the cloud is
an external intelligence that is becoming an active part of everyone’s lives.’

Learning How to Translate

Deep learning is used at Google today in more than 100 services, from
Street View to Inbox Smart Reply and voice search. Several years ago, engi-
neers at Google realized that they had to scale up these compute-intensive
applications to cloud levels. Setting out to design a special-purpose chip for
deep learning, they cleverly designed the board to fit into a hard disk drive
slot in their data center racks. Google’s tensor processing unit (TPU) is now
deployed on servers around the world, delivering an order-of-magnitude
improvement in performance for deep learning applications.

An example of how quickly deep learning can change the landscape is
the impact it has had on language translation—a holy grail for artificial
intelligence since it depends on the ability to understand a sentence. The
recently unveiled new version of Google Translate based on deep learn-
ing represents a quantum leap improvement in the quality of transla-
tion between natural languages. Almost overnight, language translation
went from a fragmented hit-and-miss jumble of phrases to seamless sen-
tences (figure 1.3). Previous computer methods searched for combinations
of words that could be translated together, but deep learning looks for
dependencies across whole sentences.

Alerted about the sudden improvement of Google Translate, on
November 18, 2016, Jun Rekimoto at the University of Tokyo tested the
new system by having it translate the opening of Ernest Hemingway’s
“The Snows of Kilimanjaro” into Japanese and then back into English—
with the following result (guess which one is the original Hemingway):

1: Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the
highest mountain in Africa. Its western summit is called the Masai “Ngaje Ngai,”
the House of God. Close to the western summit there is the dried and frozen
carcass of a leopard. No one has explained what the leopard was seeking at that
altitude.
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Figure 1.3
Japanese signs and menus instantly translated into English by Google Translate,

which is now an app on your smart phone. This is especially useful if you need to
find the right train in Japan.

2: Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be
the highest mountain in Africa. The summit of the west is called “Ngaje Ngai”
in Masai, the house of God. Near the top of the west there is a dry and frozen
dead body of leopard. No one has ever explained what leopard wanted at that
altitude."

(Hemingway is #1.)

The next step will be to train larger deep learning networks on para-
graphs to improve continuity across sentences. Words have long cultural
histories. Vladimir Nabokov, the Russian writer and English-language nov-
elist who wrote Lolita, came to the conclusion that it was impossible to
translate poetry between languages. His literal translation of Aleksandr
Pushkin’s Eugene Onegin into English, annotated with explanatory foot-
notes on the cultural background of the verses, made his point."" Perhaps
Google Translate will be able to translate Shakespeare someday by integrat-
ing across all of his poetry.'?

Learning How to Listen

Another holy grail of artificial intelligence is speech recognition. Until
recently, speaker-independent speech recognition by computers was
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limited to narrow domains, such as airline reservations. Today, it is unlim-
ited. A summer research project at Microsoft Research by an intern from
the University of Toronto in 2012 dramatically improved the performance
of Microsoft’s speech recognition system (figure 1.4)."* In 2016, a team at
Microsoft announced that its deep learning network with 120 layers had
achieved human-level performance on a benchmark test for multi-speaker
speech recognition."

The consequences of this breakthrough will ripple through society over
the next few years, as computer keyboards are replaced by natural language
interfaces. This is already happening with digital assistants as Amazon's
Alexa, Apple’s Siri, and Microsoft’s Cortana leapfrog one another into homes
everywhere. Just as typewriters became obsolete with the widespread use of

university of toronto. ,'HN

Came together to develop with BriBthelibreakthrough in the
field of speech recognition researclf'g .

The idea that they had was to usa.a technology In a

Recogninbiliey: am

—_—

Figure 1.4

Microsoft Chief Research Officer Rick Rashid in a live demonstration of automated
speech recognition using deep learning on October 25, 2012, at an event in Tianjin,
China. Before an audience of 2,000 Chinese, Rashid’s words, spoken in English, were
recognized by the automated system, which first showed them in subtitles below
Rashid’s screen image and then translated them into spoken Chinese. This high-wire
act made newsfeeds worldwide. Courtesy of Microsoft Research.
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personal computers, so computer keyboards will someday become museum
pieces.

When speech recognition is combined with language translation, it will
become possible to communicate across cultures in real time. Star Trek’s
Universal Translator is within our reach (figure 1.4). Why did it take so
long for speech recognition and language translation by computers to reach
human levels of performance? Is it just a coincidence that these and other
cognitive capabilities of computers are reaching threshold at the same
time? All these breakthroughs are being driven by big data.

Learning How to Diagnose

Skin Deep

Service industries and professions will also be transformed as machine
learning matures and is applied to many other problems where big data
is available. Medical diagnosis based on the records of millions of patients
will become more accurate. A recent study applied deep learning to 130,000
dermatological images for more than 2,000 different diseases—a medical
database ten times larger than used previously (figure 1.5)." The study’s net-
work was trained to diagnose each disease from a “test set” of new images
it had not seen before. Its diagnostic performance on the new images was
comparable to and in some cases better than that of twenty-one expert
dermatologists. It will soon be possible for anyone with a smartphone to
take a photo of a suspicious skin lesion and have it diagnosed instantly,
a process that now requires a visit to a doctor’s office, a long wait for the
lesion to be screened by an expert—and payment of a substantial bill. This
will greatly expand the scope and quality of dermatological care. If indi-
viduals can quickly get an expert assessment, they will see their doctors
office at an early stage of a skin disease, when it is easier to treat. All doctors
will become better at diagnosing rare skin diseases with the help of deep
learning.'

Deep Cancer

The detection of metastatic breast cancer in images of lymph node biopsies
on slides is done by experts who make mistakes, mistakes that have deadly
consequences. This is a pattern recognition problem for which deep learn-
ing should excel. And indeed, a deep learning network trained on a large
dataset of slides for which ground truth was known reached an accuracy
of 0.925, good but not as good as experts who achieved 0.966 on the same
test set.'” However, when the predictions of deep learning were combined
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Figure 1.5
Artist’s impression of a deep learning network diagnosing a skin lesion with high
accuracy, cover of February 2, 2017, issue of Nature.

with the human expert, the result was an almost perfect 0.995. They do bet-
ter together than either alone because deep learning networks and human
experts have different ways of looking at the same data. Many more lives
can be saved. This points toward a future in which man and machine work
together as partners rather than competitors.

Deep Sleep

If you have a serious sleep problem, which 70 percent of us will have
sometime during our lifetimes, after waiting months to see your doc-
tor (unless your problem is urgent), you will be directed to a sleep clinic,
where you will be observed overnight attached to dozens of electrodes
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to record your electroencephalogram (EEG) and muscle activity while
you sleep. In the course of each night, you will enter into slow-wave sleep
and, periodically, into rapid-eye-movement (REM) sleep, during which you
will dream, but insomnia, sleep apnea, restless leg syndrome, and many
other sleep disorders can disrupt this pattern. If you had trouble sleeping
at home, sleeping in a strange bed connected by wires to ominous medi-
cal equipment can be a real challenge. A sleep expert will look over your
EEG recordings and mark the sleep stages in blocks of 30 seconds, which
takes several hours to score each eight hours of sleep. You will eventu-
ally get back a report on abnormalities in your sleep pattern and a bill
for $2,000.

The sleep expert will have been trained to look for telltale features that
characterize the different sleep stages, based on a system devised in 1968
by Anthony Rechtshaffen and Alan Kales.'® But, because the features are
often ambiguous and inconsistent, experts agree only 75 percent of the
time on how to interpret them. In contrast, Philip Low, a former graduate
student in my lab, used unsupervised machine learning to automatically
detect sleep stages with a time resolution of 3 seconds and a concordance
with human experts of 87 percent, in less than a minute of computer time.
Moreover, this required recording from only a single location on the head
rather than many contacts and a bundle of wires that take a long time to
put on and take off. In 2007, we launched a start-up company, Neurovigil,
to bring this technology to sleep clinics, but they showed little interest in
disrupting their cash flow from human scoring. Indeed, with an insurance
code to bill patients, they had no incentive to adopt a cheaper procedure.
Neurovigil found another market in large drug companies that run clinical
trials and need to test the effects of their drugs on sleep patterns, and it is
now entering the market for long-term care facilities, where elderly often
have progressive sleep problems.

The sleep clinic model is flawed because health problems can’t be reli-
ably diagnosed based on such restricted circumstances: Everyone has a dif-
ferent baseline, and departures from that baseline are the most informative.
Neurovigil already has a compact device, the iBrain, which can record your
EEG at home, transmit the data to the Internet and analyze the data longi-
tudinally for trends and anomalies. This will allow doctors to detect health
problems early when it is easier to treat them and to stop the development
of chronic illnesses. There are other diseases whose treatment would benefit
from continuous monitoring, such as type 1 diabetes, for which the level of
sugar in the blood could be monitored and regulated by delivery of insulin.
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Access to cheap sensors that can record data continuously is having a major
impact on diagnosis and treatment of other chronic diseases.

There are several lessons to be learned from the Neurovigil experience.
Although having better and cheaper technology does not translate easily
into a marketable new product or service, even a far superior one, when an
incumbent is entrenched in the market, there are secondary markets where
the new technology can have a more immediate impact and buy time to
improve and better compete. This is how the technologies of solar energy
and of many other new industries entered the market. In the long run, sleep
monitoring and new technologies with demonstrated advantages will reach
patients at home and eventually be integrated into medical practice.

Learning How to Make Money

More than 75 percent of trading on the New York Stock Exchange is auto-
mated (figure 1.6), fueled by high-frequency trades that move into and out
of positions in fractions of a second. (When you don’t have to pay for each
transaction, even small advantages can be parlayed into big profits.) Algo-
rithmic trading on a longer time scale takes into account longer-term trends
based on big data. Deep learning is getting better and better at making both
more money and higher profits.' The problem with predicting the finan-
cial markets is that the data are noisy and conditions are not stationary—
psychology can change overnight after an election or international conflict.
This means that an algorithm that predicts stock values today may not
work tomorrow. In practice, hundreds of algorithms are used and the best
ones are continually combined to optimize returns.

Back in the 1980s, when I was consulting for Morgan Stanley on neu-
ral network models of stock trading, I met David Shaw, a computer scien-
tist who specialized in designing parallel computers. On leave of absence
from Columbia University, Shaw was working as a quantitative analyst, or
“quant,” in the early days of automated trading. He would go on to start his
own investment management firm on Wall Street, the D. E. Shaw Group,
and he is now a multibillionaire. The D. E. Shaw Group has been highly
successful, but not as successful as another hedge fund, Renaissance Tech-
nologies, which was founded by James Simons, a distinguished mathema-
tician and former chair of the Mathematics Department at Stony Brook
University. Simons made $1.6 billion in 2016 alone, and this wasn’t even
his best year.”® Called “the best physics and mathematics department in the
world,”*' Renaissance “avoids hiring anyone with even the slightest whiff
of Wall Street bona fides.”*
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Machine learning is driving algorithmic trading, which is faster than traditional
long-term investment strategies and more deliberate than high-frequency trading
(HFT) in stock markets. Many different kinds of machine learning algorithms are
combined to achieve best returns.

No longer involved in the daily operation of D. E. Shaw, David Shaw is
now engrossed in D. E. Shaw Research, which has built a special-purpose
parallel computer, called “Anton,” that performs protein folding much
faster than any other computer on the planet.”® Simons has retired from
overseeing Renaissance and has started a foundation that funds research
on autism and other programs in the physical and biological sciences.
Through the Simons Institute for the Theory of Computing at UC Berkeley,
the Simons Center for the Social Brain at MIT, and the Flatiron Institute in
New York, Shaw’s philanthropy has had a major impact on advancing com-
putational methods for data analysis, modeling, and simulation.**

Financial services more broadly are undergoing a transformation under
the banner of financial technology, or “fintech,” as it has come to be called.
Information technology such as block chain, which is a secure Internet
ledger that replaces financial middlemen in transactions, is being tested on
a small scale but could soon disrupt multitrillion-dollar financial markets.
Machine learning is being used to improve credit evaluation on loans, to
accurately deliver business and financial information, to pick up signals on
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social media that predict market trends, and to provide biometric security
for financial transactions. Whoever has the most data wins, and the world
is awash with financial data.

Learning the Law

Deep learning is just beginning to affect the legal profession. Much of the
routine work of associates in law firms who charge hundreds of dollar an
hour will be automated, especially in large, high-value commercial offices.
In particular, technology-assisted review, or discovery, will be taken over by
artificial intelligence, which can sort through thousands of documents for
legal evidence without getting tired. Automated deep learning systems will
also help law firms comply with the increasing complexity of governmental
regulations. They will make legal advice available for the average person
who cannot now afford a lawyer. Not only will legal work be cheaper; it will
be much faster, a factor that is often more important than its expense. The
world of law is well on its way to becoming “Legally Deep.”*®

Learning How to Play Poker

Heads-up no-limit Texas hold 'em is one of the most popular versions of
poker, commonly played in casinos, and the no-limit betting form is played
at the main event of the World Series of Poker (figure 1.7). Poker is chal-
lenging because, unlike chess, where both players have access to the same
information, poker players have imperfect information, and, at the highest
levels of play, skills in bluffing and deception are as important as the cards
that are dealt.

The mathematician John von Neumann, who founded mathematical
game theory and pioneered digital computers, was particularly fascinated
with poker. As he put it: “Real life consists of bluffing, of little tactics of
deception, of asking yourself what is the other man going to think [ mean
to do. And that is what games are about in my theory.”*® Poker is a game
that reflects parts of human intelligence that were refined by evolution.
A deep learning network called “DeepStack” played 44,852 games against
thirty-three professional poker players. To the shock of poker experts, it beat
the best of the poker players by a sizable margin, one standard deviation,
but it beat the thirty-three players overall by four standard deviations—an
immense margin.” If this achievement is replicated in other areas where
human judgment based on imperfect information is paramount, such as pol-
itics and international relations, the consequences could be far reaching.”®
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Figure 1.7

Heads-up no-limit Texas hold ‘em. Aces in the hole. Bluffing in high stakes poker has
been mastered by DeepStack, which has beaten professional poker players at their
own game by a wide margin.

Learning How to Play Go

In March 2016, Lee Sedol, the Korean Go 18-time world champion, played
and lost a five-game match against DeepMind’s AlphaGo (figure 1.8), a
Go-playing program that used deep learning networks to evaluate board
positions and possible moves.” Go is to Chess in difficulty as chess is to
checkers. If chess is a battle, Go is a war. A 19x19 Go board is much larger
than an 8x8 chessboard, which makes it possible to have several battles
raging in different parts of the board. There are long-range interactions
between battles that are difficult to judge, even by experts. The total num-
ber of legal board positions for Go is 10'7°, far more than the number of
atoms in the universe.

In addition to several deep learning networks to evaluate the board and
choose the best move, AlphaGo had a completely different learning system,
one used to solve the temporal credit assignment problem: which of the
many moves were responsible for a win, and which were responsible for a
loss? The basal ganglia of the brain, which receive projections from the entire
cerebral cortex and project back to it, solve this problem with a temporal
difference algorithm and reinforcement learning. AlphaGo used the same
learning algorithm that the basal ganglia evolved to evaluate sequences of
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Figure 1.8

Go board during play in the five-game match that pitted Korean Go champion Lee
Sedol against AlphaGo, a deep learning neural network that had learned how to play
Go by playing itself.

actions to maximize future rewards (a process that will be explained in chap-
ter 10). AlphaGo learned by playing itself—many, many times

The Go match that pitted AlphaGo against Lee Sedol had a large follow-
ing in Asia, where Go champions are national figures and treated like rock
stars. AlphaGo had earlier defeated a European Go champion, but the level
of play was considerably below the highest levels of play in Asia, and Lee
Sedol was not expecting a strong match. Even DeepMind, the company
that had developed AlphaGo, did not know how strong their deep learning
program was. Since its last match, AlphaGo had played millions of games
with several versions of itself and there was no way to benchmark how
good it was.

It came as a shock to many when AlphaGo won the first three of five
games, exhibiting an unexpectedly high level of play. This was riveting
viewing in South Korea, where all the major television stations had a run-
ning commentary on the games. Some of the moves made by AlphaGo
were revolutionary. On the thirty-eighth move in the match'’s second game,
AlphaGo made a brilliantly creative play that surprised Lee Sedol, who took
nearly ten minutes to respond. AlphaGo lost the fourth game, a face-saving
win for humans, and ended the match by winning four games to one (fig-
ure 1.9).* I stayed up into the wee hours of those March nights in San
Diego and was mesmerized by the games. They reminded me of the time
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I sat glued to the TV in Cleveland on June 2, 1966, at 1:00 a.m., as the
Surveyor robotic spacecraft landed on the moon and beamed back the first
photo of a moonscape.®' I witnessed these historic moments in real time.
AlphaGo far exceeded what I and many others thought was possible.

On January 4, 2017, a Go player on an Internet Go server called “Mas-
ter” was unmasked as AlphaGo 2.0 after winning sixty out of sixty games
against some of the world’s best players, including the world’s reigning Go
champion, the nineteen-year-old prodigy Ke Jie of China. It revealed a new
style of play that went against the strategic wisdom of the ages. On May
27,2017, Ke Jie lost three games to AlphaGo at the Future of Go Summit in
Wuzhen, China (figure 1.10). These were some of the best Go games ever
played, and hundreds of millions of Chinese followed the match. “Last
year, I think the way AlphaGo played was pretty close to human beings, but
today I think he plays like the God of Go,” Ke Jie concluded.*

After the first game, which he lost by a razor-thin margin of one-half
point, Ke Jie said that he “was very close to winning the match in the
middle of the game” and that he was so excited “I could feel my heart
thumping! Maybe because I was too excited I made some stupid moves.
Maybe that’s the weakest part of human beings.”** What Ke Jie experienced
was an emotional overload, but a less elevated level of emotions is needed
to reach peak performance. Indeed, stage actors know that if they don’t
have butterflies in their stomachs before their performances, they won't be

Figure 1.9
Lee Sedol after losing the Go Challenge Match in March 2016.
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Figure 1.10
Demis Hassabis (left) and Ke Jie meet after the historic Go match in China in 2017,
holding a board with Ke Jie's signature. Courtesy of Demis Hassabis.

in good form. Their performances follow an inverted U-shaped curve, with
their best ones in an optimal state between low and high levels of arousal.
Athletes call this being “in the zone.”

AlphaGo also defeated a team of five top players on May 26, 2017. These
players have analyzed the moves made by AlphaGo and are already chang-
ing their strategies. In a new version of “ping-pong diplomacy,” the match
was hosted by the Chinese government. China is making a large invest-
ment in machine learning, and a major goal of their brain initiative is to
mine the brain for new algorithms.**

The next chapter in this Go saga is even more remarkable, if that is
possible. AlphaGo was jump-started by supervised learning from 160,000
human Go games before playing itself. Some thought this was cheating—
an autonomous Al program should be able to learn how to play Go without
human knowledge. In October, 2017, a new version, called AlphaGo Zero,
was revealed that learned to play Go starting with only the rules of the
game, and trounced AlphaGo Master, the version that beat Kie Jie, winning
100 games to none.*® Moreover, AlphaGo Zero learned 100 times faster and
with 10 times less compute power than AlphaGo Master. By completely
ignoring human knowledge, AlphaGo Zero became super-superhuman.
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There is no known limit to how much better AlphaGo might become as
machine learning algorithms continue to improve.

AlphaGo Zero had dispensed with human play, but there was still a lot
of Go knowledge handcrafted into the features that the program used to
represent the board. Maybe AlphaGo Zero could improve still further with-
out any Go knowledge. Just as Coca-Cola Zero stripped all the calories from
Coca-Cola, all domain knowledge of Go was stripped from AlphaZero. As a
result, AlphaZero was able to learn even faster and decisively beat AlphaGo
Zero.*® To make the point that less is more even more dramatically, Alp-
haZero, without changing a single learning parameter, learned how to play
chess at superhuman levels, making alien moves that no human had ever
made before. AlphaZero did not lose a game to Stockfish, the top chess pro-
gram already playing at superhuman levels. In one game, AlphaZero made
a bold bishop sacrifice, sometimes used to gain positional advantage, fol-
lowed by a queen sacrifice, which seemed like a colossal blunder until it led
to a checkmate many moves later that neither Stockfish nor humans saw
coming. The aliens have landed and the earth will never be the same again.

AlphaGo’s developer, DeepMind, was cofounded in 2010 by neurosci-
entist Demis Hassabis (figure 1.10, left), who had been a postdoctoral fel-
low at University College London’s Gatsby Computational Neuroscience
Unit (directed by Peter Dayan, a former postdoctoral fellow in my lab and
winner of the prestigious Brain Prize in 2017 along with Raymond Dolan
and Wolfram Schultz for their research on reward learning). DeepMind was
acquired by Google for $600 million in 2014. The company employs more
than 400 engineers and neuroscientists in a culture that is a blend between
academia and start-ups. The synergies between neuroscience and Al run
deep and are quickening.

Learning How to Become More Intelligent

Is AlphaGo intelligent? There has been more written about intelligence
than any other topic in psychology except consciousness, both of which
are difficult to define. Psychologists since the 1930s distinguish between
fluid intelligence, which uses reasoning and pattern recognition in new sit-
uations to solve new problems, without depending on previous knowledge,
and crystallized intelligence, which depends on previous knowledge and is
what the standard IQ tests measure. Fluid intelligence follows a develop-
mental trajectory, reaching a peak in early adulthood and decreasing with
age, whereas crystallized intelligence increases slowly and asymptotically
as you age until fairly late in life. AlphaGo displays both crystallized and
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fluid intelligence in a rather narrow domain, but within this domain, it
has demonstrated surprising creativity. Professional expertise is also based
on learning in narrow domains. We are all professionals in the domain of
language and practice it every day.

The reinforcement learning algorithm used by AlphaGo can be applied
to many problems. This form of learning depends only on the reward given
to the winner at the end of a sequence of moves, which paradoxically can
improve decisions made much earlier. When coupled with many power-
ful deep learning networks, this leads to many domain-dependent bits
of intelligence. And, indeed, cases have been made for different domain-
dependent kinds of intelligence: social, emotional, mechanical, and con-
structive, for example.”” The “g factor” that intelligence tests claim to
measure is correlated with these different kinds. There are reasons to be cau-
tious about interpreting 1Q tests. The average 1Q has been going up all over
the world by three points per decade since it was first studied in the 1930s,
a trend called the “Flynn effect.” There are many possible explanations
for the Flynn effect, such as better nutrition, better health care, and other
environmental factors.* This is quite plausible because the environment
affects gene regulation, which in turn affects brain connectivity, leading
to changes in behavior.*’ As humans increasingly are living in artificially
created environments, brains are being molded in ways that nature never
intended. Could it be that humans have been getting smarter over a much
longer period of time? For how long will the increase in IQ continue? The
incidence of people playing computers in chess, backgammon, and now Go
has been steadily increasing since the advent of computer programs that
play at championship levels, and so has the machine augmented intelli-
gence of the human players.*’ Deep learning will boost the intelligence not
just of scientific investigators but of workers in all professions.

Scientific instruments are generating data at prodigious rate. Elementary
particle collisions at the Large Hadron Collider (LHC) in Geneva gener-
ate 25 petabyes of data each year. The Large Synoptic Sky Telescope (LSST)
will generate 6 petabytes of data each year. Machine learning is being used
to analyze the huge physics and astronomy datasets that are too big for
humans to search by traditional methods.*' For example, DeepLensing is
a neural network that recognizes images of distant galaxies that have been
distorted by light bending by “gravitational lenses” around another galaxy
along the line of sight. This allows many new distant galaxies to be auto-
matically discovered. There are many other “needle-in-a-haystack” prob-
lems in physics and astronomy for which deep learning vastly amplifies
traditional approaches to data analysis.
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The Shifting Job Market

Introduced by banks in the late 1960s to dispense cash to account holders
24/7, a much-welcomed convenience for those in need of cash before or
after normal banking hours, automated teller machines (ATMs) have since
acquired the ability to read handwritten checks. And though they reduced
routine work for bank tellers, there are more bank tellers than before
providing customers with personalized services such as mortgage and
investment advice, and new ATM repair jobs*—just as the steam engine
displaced manual laborers, on the one hand, but gave rise to new jobs for
skilled workers who could build and maintain steam engines and drive
steam locomotives, on the other. So, too, Amazon’s online marketing has
displaced many workers from local brick-and-mortar retail stores but has
also created 380,000 new jobs for workers in the distribution and delivery
of the goods sold by it and by the many businesses under its umbrella.*
And as jobs that now require human cognitive skills are taken over by
automated Al systems, there will be new jobs for those who can create and
maintain these systems.

Job turnover is nothing new. Farmworkers in the nineteenth century
were displaced by machines, and new jobs were created at city factories
made possible by machines, all of which required an educational system
to train workers in new skills. The difference is that, today, the new jobs
being opened up by artificial intelligence will require new, different, and
ever-changing skills in addition to traditional cognitive skills.** So we
will need to learn throughout our lifetimes. For this to happen, we will
need a new educational system that is based at the home rather than the
school.

Fortunately, just as the need for finding new jobs has become acute, the
Internet has made available free massive open online courses (MOOCs) to
acquire new knowledge and skills. Though still in their infancy, MOOCs
are evolving rapidly in the education ecosystem and hold great promise for
delivering quality instruction to a wider range of people than ever before.
When coupled with the next generation of digital assistants, MOOCs could
be transformational. Barbara Oakley and I developed a popular MOOC
called “Learning How to Learn” that teaches you how to become a better
learner (figure 1.11) and a follow-up MOOC called “Mindshift” that teaches
you how to reinvent yourself and change your lifestyle (both MOOCs will
be described in chapter 12).

As you interact with the Internet, you are generating big data about
yourself that is machine readable. You are being targeted by ads generated
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Learning
How to Learn

Figure 1.11

“Learning How to Learn,” a massive open online course (MOOC) that teaches you
how to become a better learner is the most popular MOOC on the Internet, with over
3 million learners. Courtesy of Terrence Sejnowski and Barbara Oakley.

from the digital bread crumbs you have left behind on the Internet. The
information you reveal on Facebook and other social media sites can be
used to create a digital assistant that knows you better than almost anyone
else in the world and will not forget anything, becoming, in effect, your
virtual doppelganger. By pressing both Internet tracking and deep learn-
ing into service, the educational opportunities for the children of today’s
children will be better than the best available today to wealthy families.
These grandchildren will have their own digital tutors, who will accom-
pany them throughout the trajectory of their education. Not only will edu-
cation become more individualized; it will become more precise. There are
already a wide range of educational experiments under way throughout
the world at programs like the Kahn Academy and funded by the Gates,
Chan-Zuckerberg, and other philanthropic foundations that are testing
software to make it possible for all children to progress at their own pace
throughout their formal education and to adapt to the specific needs of
each child.*” The widespread availability of digital tutors will free teachers
from the repetitive parts of teaching, like grading, and allow them to do
what humans do best—emotional support for struggling students and intel-
lectual inspiration for gifted students. Educational technology—edtech—is
moving rapidly ahead, and the transition to precision education could be
quite fast compared to self-driving cars because the obstacles it must over-
come are much less daunting, the demand is much greater, and education
in the U.S. is a trillion-dollar market.** One major concern will be who has
access to the internal files of the digital assistants and digital tutors.

Is Artificial Intelligence an Existential Threat?

When AlphaGo convincingly beat Lee Sedol at Go in 2016, it fueled a
reaction that had been building over the last several years concerning the
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dangers that artificial intelligence might present to humans. Computer sci-
entists signed pledges not to use Al for military purposes. Stephen Hawking
and Bill Gates made public statements warning of the existential threat
posed by Al Elon Musk and other Silicon Valley entrepreneurs set up a
new company, OpenAl, with a one-billion-dollar nest egg and hired Ilya
Sutskever, one of Geoffrey Hinton’s former students, to be its first direc-
tor. Although OpenAl’s stated goal was to ensure that future Al discover-
ies would be publicly available for all to use, it had another, implicit and
more important goal—to prevent private companies from doing evil. For,
with AlphaGo’s victory over world Go champion Sedol, a tipping point had
been reached. Almost overnight, artificial intelligence had gone from being
judged a failure to being perceived as an existential threat.

This is not the first time an emergent technology has seemed to pose an
existential threat. The invention, development, and stockpiling of nuclear
weapons threatened to blow up the world, but somehow we have managed
to keep that from happening, at least until now. When recombinant DNA
technology first appeared, there was fear that deadly engineered organisms
would be set loose to cause untold suffering and death across the globe.
Genetic engineering is now a mature technology, and so far we have man-
aged to survive its creations. The recent advances in machine learning pose
a relatively modest threat compared to nuclear weapons and killer organ-
isms. We will also adapt to artificial intelligence, and, indeed, this is already
happening.

One of the implications of DeepStack’s success is that a deep learning
network can learn how to become a world-class liar. What deep networks
can be trained to do is limited only by the trainer’s imagination and data. If
a network can be trained to safely drive a car, it can also be trained to race
Formula 1 cars, and someone probably is willing to pay for it. Today it still
requires skilled and highly trained practitioners to build products and ser-
vices using deep learning, but as the cost of computing power continues to
plummet and as software becomes automated, it will soon become possible
for high school students to build Al applications. Otto, the highest-earning
online e-commerce company in Germany for clothing, furnishings, and
sport, is using deep learning to predict ahead of time what its custom-
ers are likely to order based on their past history of ordering and then to
preorder it for them.” With 90 percent accuracy, customers receive mer-
chandise almost before they order it. Done automatically without human
intervention, preordering not only saves the company millions of euros a
year in reduced surplus stock and product returns but also results in greater
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customer satisfaction and retention. Rather than displacing Otto’s work-
ers, deep learning has boosted their productivity. Al can make you more
productive at your job.

Although the major high-tech companies have pioneered deep learn-
ing applications, machine learning tools are already widely available and
many other companies are beginning to benefit. Alexa, a wildly popular
digital assistant operating in tandem with the Amazon Echo smart speaker,
responds to natural language requests based on deep learning. Amazon
Web Services (AWS) has introduced toolboxes called “Lex,” “Poly” and
“Comprehend” that make it easy to develop the same natural language
interfaces based on automated test-to-speech, speech recognition and natu-
ral language understanding, respectively. Applications with conversational
interactions are now within the reach of smaller businesses that can’t afford
to hire machine learning experts. Al can enhance customer satisfaction.

When chess-playing computer programs eclipsed the best human chess
players, did that stop people from playing chess? On the contrary, it raised
their level of play. It also democratized chess. The best chess players once
came from big cities like Moscow and New York that had a concentration
of grandmasters who could teach younger players and raise their level of
play. Chess-playing computer programs made it possible for Magnus Carl-
son, who grew up in a small town in Norway, to become a chess grand-
master at thirteen, and today he is the world chess champion. The benefits
of artificial intelligence will affect not just the playing of games, however,
but every aspect of human endeavor, from art to science. Al can make you
smarter.*®

Back to the Future

The Deep Learning Revolution has two intertwined themes: how human
intelligence evolved and how artificial intelligence is evolving. The big
difference between the two kinds of intelligence is that it took human
intelligence many millions of years to evolve, but artificial intelligence is
evolving on a trajectory measured in decades. Although this is warp speed
even for cultural evolution, fastening our seat belts may not be the right
response.

The recent breakthroughs in deep learning were not the overnight suc-
cesses that you might have gathered from press reports. The story behind
the shift from artificial intelligence based on symbols, logic, and rules to
deep learning networks based on big data and learning algorithms is not
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generally known. The Deep Learning Revolution tells that story and explores
the origins and consequences of deep learning from my perspective both
as a pioneer in developing learning algorithms for neural networks in the
1980s and as the president of the Neural Information Processing Systems
(NIPS) Foundation, which has overseen discoveries in machine learning
and deep learning over the last thirty years. My colleagues and I in the
neural network community were for many years the underdogs, but our
persistence and patience eventually prevailed.



2 The Rebirth of Artificial Intelligence

Marvin Minsky was a brilliant mathematician and a founder of the MIT
Artificial Intelligence Laboratory (MIT Al Lab).! Founders set the direction
and the culture of a field, and, thanks in no small part to Minsky, artifi-
cial intelligence at MIT in the 1960s was a bastion of cleverness. Bubbling
over with more ideas per minute than anyone else I knew, he could con-
vince you that his take on a problem was right, even when common sense
told you otherwise. I admired his boldness and his cleverness—but not the
direction that he took Al

Child’s Play?

Blocks World is a good example of a project that came out of the MIT Al
Lab in the 1960s. To simplify the problem of vision, Blocks World consisted
of rectangular building blocks that could be stacked to create structures
(figure 2.1). The goal was to write a program that could interpret a com-
mand, such as “Find a large yellow block and put it on top of the red block,”
and plan the steps needed for a robot arm to carry out the command. This
seems like child’s play, but a large, complex program had to be written,
one that became so cumbersome that it could not be readily debugged and
was effectively abandoned when the student who wrote the program, Terry
Winograd, left MIT. This seemingly simple problem was much harder than
anyone thought it would be, and, even if it had succeeded, there was no
direct path from Blocks World to the real world, where objects come in
many shapes, sizes, and weights, and not all angles are right angles. Com-
pared to a controlled laboratory setting where the direction and level of
lighting can be fixed, in the real world, lighting can vary dramatically from
place to place and time to time, which greatly complicates the task of object
recognition for computers.
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Figure 2.1

Marvin Minsky watching a robot stacking blocks around 1968. Blocks World was a
simplified version of how we interact with the world, but it was far more complex
than anyone imagined, and was not solved until 2016 by deep learning.

In the 1960s, the MIT Al Lab received a large grant from a military
research agency to build a robot that could play Ping-Pong. I once heard a
story that the principal investigator forgot to ask for money in the grant pro-
posal to build a vision system for the robot, so he assigned the problem to a
graduate student as a summer project. I once asked Marvin Minsky whether
the story was true. He snapped back that I had it wrong: “We assigned the
problem to undergraduate students.” A document from the archives at MIT
confirms his version of the story.> What looked like it would be an easy
problem to solve proved to be quicksand that swallowed a generation of
researchers in computer vision.

Why Vision Is a Hard Problem

We rarely have difficulty identifying what an object is despite differences
in the location, size, orientation, and lighting of the object. One of the
earliest ideas in computer vision was to match a template of the object with
the pixels in the image, but that approach failed because the pixels of the
two images of the same object in different orientations don’t match. For
example, consider the two birds in figure 2.2. If you shift the image of one
bird over the other, you can get a part to match, but the rest is out of regis-
ter; but you can get a fairly good match to an image of another bird species
in the same pose.
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Figure 2.2

Zebra finches consulting with each other. We have no difficulty seeing that they
are the same species. But because they have different orientations to the viewer it is
difficult to compare them with templates even though they have almost identical
features.

Progress in computer vision was made by focusing not on pixels but
on features. For example, birders have to become experts in distinguishing
between different species that may differ in only a few subtle markings. A
practical and popular book on identifying birds has only one photograph
of a bird, but many schematic drawings pointing out the subtle differences
between them (figure 2.3).* A good feature is one that is unique to one bird
species, but because the same features are found on many species, what
makes it possible to identify a bird is the unique combination of several
field marks such as wing bars, eye stripes, and wing patches. And when
these field marks are shared by closely related species, there are calls and
songs that distinguish one from another. Drawings or paintings of birds are
much better at directing our attention to the relevant distinguishing fea-
tures than are photographs, which are filled with hundreds of less relevant
features (figure 2.3).

The problem with this features-based approach is not just that it is very
labor intensive to develop feature detectors for the hundreds of thousands
of different objects in the world, but that, even with the best feature detec-
tors, ambiguities arise from images of objects that are partially occluded,
which makes recognizing objects in cluttered scenes a daunting task for
computers.
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Figure 2.3
Distinctive feature that can be used to discriminate between similar birds. The arrows

point toward the location of where to find wing bars that are especially important for
telling apart families of warblers: Some are conspicuous, some obscure, some double,
some long, some short. From Peterson, Mountfort, and Hollom, Field Guide to the
Birds of Britain and Europe, 5th ed., p.16.

Little did anyone suspect in the 1960s that it would take fifty years and
a millionfold increase in computer power before computer vision would
reach human levels of performance. The misleading intuition that it would
be easy to write a computer vision program is based on activities that we
find easy to do, such as seeing, hearing, and moving around—but that
took evolution millions of years to get right. Much to their chagrin, early
Al pioneers found the computer vision problem to be extremely hard to
solve. In contrast, they found it much easier to program computers to prove
mathematical theorems—a process thought to require the highest levels of
intelligence—because computers turn out to be much better at logic than
we are. Being able to think logically is a late development in evolution and,
even in humans, requires training to follow a long line of logical proposi-
tions to a rigorous conclusion, whereas, for most problems we need to solve
to survive, generalizations from previous experiences work well for us most
of the time.

Expert Systems

Popular in the 1970s and 1980s, Al expert systems were developed to solve
problems like medical diagnosis using a set of rules. Thus an early expert
system, MYCIN, was developed to identify the bacteria responsible for infec-
tious diseases such as meningitis.* Following the expert system approach,
MYCIN’s developers had first to collect facts and rules from infectious dis-
ease experts, as well as symptoms and medical histories from the patients,
then to enter these into the system’s computer, and finally to program the
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computer to make inferences using logic. The developers ran into difficul-
ties in collecting the facts and rules from the experts, however, especially
in the more complex domains, where the best diagnosticians rely not on
rules but on pattern recognition based on experience, which is difficult
to codify,® and where their system had to be continually updated as new
facts were discovered and old rules became obsolete. And they encountered
further difficulties in collecting and entering the patients’ symptoms and
medical histories into the system’s computer, a process that could take a
half hour or longer per patient, more time than a busy physician could
afford. Not surprisingly, MYCIN was never used clinically. Although many
expert systems were written for other applications such as toxic spill man-
agement, mission planning for autonomous vehicles, and speech recogni-
tion, few are in use today.

Researchers tried many different approaches in the early decades of Al,
but their approaches were more clever than they were practical. Not only
did they underestimate the complexity of real-world problems, but the
solutions they proposed scaled badly. In complex domains, the number of
rules can be enormous, and as new facts are added by hand, keeping track
of exceptions to and interactions with other rules becomes impractical.
Douglas Lenat, for example, started a project called “Cyc” in 1984 to codify
common sense, which seemed like a good idea at the time but turned out
to be a nightmare in practice.® We take for granted a boundless number of
facts about the way the world works, most of which are based on experi-
ence. For example, a cat falling from 40 feet will probably avoid harm,” but
a human falling from the same height probably won't.

Another reason why progress in early Al was so slow was that digital
computers were incredibly primitive and memory forbiddingly expensive
by today’s standards. But because digital computers are highly efficient at
logical operations, symbol manipulation, and the application of rules, it is
not too surprising that these computational primitives would be favored
in the twentieth century. Thus Allen Newell and Herbert Simon, two com-
puter scientists from Carnegie Mellon University, were able to write a com-
puter program called “Logic Theorist” in 1955 that could prove the logical
theorems in Principia Mathematica, Alfred North Whitehead and Bertrand
Russell’s attempt to systematize all of mathematics. There were great expec-
tations in these early days that intelligent computers were just around the
corner.

Al pioneers who sought to write computer programs with the function-
ality of human intelligence did not care how the brain actually achieved
intelligent behavior. When I asked Allen Newell why, he told me that he



32 Chapter 2

personally had been open to insights from brain research, but that there
simply hadn’t been enough known at the time to be of much use. Basic
principles of brain function were just emerging in the 1950s, led by the
work of Alan Hodgkin and Andrew Huxley, who explained how signals
from the brain are carried over a long distance by all-or-none electrical
spikes in nerves, and of Bernard Katz, who discovered clues to how these
electrical signals are converted into chemical signals at synapses, which
communicate between neurons.®

Although, by the 1980s, more was both known about the brain and more
widely accessible outside the field of biology, the brain itself had become
irrelevant for the new generation of Al researchers, whose goal was to write
a program that was functionally equivalent to how the brain worked. In
philosophy this stance was called functionalism, which for many was a
good excuse to ignore the messy details in biology. But a small group of Al
researchers who were not part of the mainstream believed that an approach
to artificial intelligence inspired by the actual biology of the brain and
variously called “neural networks,” “connectionism,” and “parallel distrib-
uted processing” could eventually solve difficult problems that had eluded
logic-based Al

I was one of that group.

Into the Lion’s Den

In 1989, Michael Dertouzos, head of MIT’s Computer Science Labora-
tory, invited me to give a distinguished lecture at MIT on my pioneering
approach to Al based on neural networks (figure 2.4). On arriving there, I
was warmly greeted by Dertouzos, who, as we rode together in the eleva-
tor, told me that it was an MIT tradition for the distinguished lecturer to
take five minutes to open a discussion with faculty and students on his or
her topic over lunch. “And,” he added as the doors of the elevator opened,
“they hate what you do.”

The room was packed with perhaps as many as a hundred people, which
surprised even Dertouzos. Scientists were standing in circles three rows
deep: the first row for senior faculty, junior faculty in the second row, and
students in the rows beyond them. And I was in the center, stationed in
front of the buffet, the main dish. What could I possibly say in five min-
utes that could make any difference to an audience that hated what I was
doing?

I improvised: “That fly on the food has a brain with only 100,000 neu-
rons; it weighs a milligram and consumes a milliwatt of power,” I said,
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Figure 2.4

Terry Sejnowski talking about scaling laws for the cortex shortly after he moved to
the Salk Institute in 1989. Courtesy of Ciencia Explicada.

winging it. “The fly can see, it can fly, it can navigate, and it can find food.
But what is truly remarkable is that it can reproduce itself. MIT owns a
supercomputer that costs $100 million: it consumes a megawatt of power
and is cooled by a huge air-conditioner. But the biggest cost of the super-
computer is human sacrifice in the form of programmers to feed its vora-
cious appetite for programs. That supercomputer can’t see, it can’t fly, and
although it communicates with other computers, it can’t mate or reproduce
itself. What is wrong with this picture?”

After a long pause, a senior faculty member spoke, “Because we haven’t
written the vision program yet.” (The Department of Defense had recently
poured $600 million into its Strategic Computing Initiative, a program that
ran from 1983 to 1993 but came up short on building a vision system to
guide a self-driving tank.)’ “Good luck with that,” was my reply.

Gerald Sussman, who made several important applications of Al to
real-world problems, including a system for high-precision integration for
orbital mechanics, defended the honor of MIT’s approach to Al with an
appeal to the classic work of Alan Turing, who had proven that the Turing
machine, a thought experiment, could compute any computable function.
“And how long would that take?” I asked. “You had better compute quickly
or you will be eaten,” I added, then walked across the room to pour myself
a cup of coffee. And that was the end of the dialogue with the faculty.
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“What is wrong with this picture?” is a question that every student in
my lab can answer. But the first two rows of my lunchtime audience were
stumped. Finally, a student in the third row offered this reply: “The digital
computer is a general-purpose device, which can be programmed to com-
pute anything, though inefficiently, but the fly is a special-purpose com-
puter that can see and fly but can’t balance my checkbook.” This was the
right answer. The vision networks in the fly eye evolved over hundreds of
millions of years, and its vision algorithms are embedded in the networks
themselves. This is why you can reverse engineer vision by working out the
wiring diagram and information flow through the neural circuits of the fly
eye, and why you can't do that for a digital computer, where the hardware
by itself needs software to specify what problem is being solved.

I recognized Rodney Brooks smiling in the back of the crowd, someone I
had once invited to a workshop on computational neuroscience in Woods
Hole on Cape Cod, Massachusetts. Brooks is from Australia, and, in the
1980s, he was a junior faculty member in the MIT Al Lab, where he built
walking robotic insects using an architecture that did not depend on digital
logic. He would eventually become the lab’s director and go on to found
iRobot, the company that makes Roombas.

The room where I gave my lecture that afternoon was huge and filled
with a large contingent of undergraduate students, the next generation
looking to the future rather than the past. I talked about a neural network
that learned how to play backgammon, a project I collaborated on with
Gerald Tesauro, a physicist at the Center for Complex Systems Research at
the University of Illinois in Urbana-Champaign. Backgammon is a race to
the finish between two players, with pieces that move forward based on
each roll of the dice, passing over one another on the way. Unlike chess,
which is deterministic, backgammon is governed by chance: the uncer-
tainty with every roll of the dice makes it more difficult to predict the out-
come of a particular move. It is a highly popular game in the Middle East,
where some make a living playing high-stakes backgammon.

Rather than write a program based on logic and heuristics to handle
all possible board positions, an impossible task given that there are 10%°
possible backgammon board positions, we had the network learn to play
through pattern recognition by watching a teacher play.'” Gerry went on to
create the first backgammon program that played at world-championship
levels by having the backgammon network play itself (a story that will be
told in chapter 10).

After my lecture, I learned that there was a front page article in the New
York Times that morning about how government agencies were slashing
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funding for artificial intelligence. Although this was the beginning of an
Al winter for mainstream researchers, it didn’t affect me or the rest of my
group, for whom the neural network spring had just begun.

But our new approach to Al would take twenty-five years to deliver real-
world applications in vision, speech, and language. Even in 1989, I should
have known it would take this long. In 1978, when I was a graduate student
at Princeton, I extrapolated Moore’s law for the exponential increase in
computing power, doubling every 18 months, to see how long it would take
to reach brain levels of computing power and concluded it would happen
in 2015. Fortunately, that did not deter me from charging ahead. My belief
in neural networks was based on my intuition that if nature had solved
these problems, we should be able to learn from nature how to solve them,
too. The twenty-five years I had to wait was not even a blink of the eye
compared to the hundreds of millions of years it took nature.

Inside the visual cortex, neurons are arranged in a hierarchy of layers. As
sensory information is transformed cortical layer by cortical layer, the repre-
sentation of the world becomes more and more abstract. Over the decades,
as the number of layers in neural network models increased, their perfor-
mance continued to improve until finally a critical threshold was reached
that allowed us to solve problems we could only dream about solving in the
1980s. Deep learning automates the process of finding good features that
distinguish different objects in an image, and that is why computer vision
is so much better today than it was five years ago.

By 2016, computers had become a million times faster and computer
memory had increased by a billion times from megabytes to terabytes. It
became possible to simulate neural networks with millions of units and
billions of connections, compared with networks in the 1980s that had
only hundreds of units and thousands of connections. Though still tiny
by the standards of a human brain, which has a hundred billion neurons
and a million billion synaptic connections, today’s networks are now large
enough to demonstrate proof of principle in narrow domains.

Deep learning in deep neural networks has arrived. But before there were
deep networks, we had to learn how to train shallow networks.
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The only existence proof that any of the hard problems in artificial
intelligence can be solved is the fact that, through evolution, nature has
already solved them. But there were clues in the 1950s for how computers
might actually achieve intelligent behavior, if Al researchers would take an
approach that was fundamentally different from symbol processing.

The first clue was that our brains are powerful pattern recognizers. Our
visual systems can recognize an object in a cluttered scene in one-tenth of a
second, even though we may have never seen that particular object before
and even when the object is in any location, of any size, and in any orien-
tation to us. In short, our visual system behaves like a computer that has
“recognize object” as a single instruction.

The second clue was that our brains can learn how to perform many
difficult tasks through practice, from playing the piano to mastering phys-
ics. Nature uses general-purpose learning to solve specialized problems, and
humans are champion learners. This is our special power. The organization
of our cerebral cortex is similar throughout, and deep learning networks are
found in all our sensory and motor systems.’

The third clue was that our brains aren’t filled with logic or rules. Yes, we
can learn how to think logically or follow rules, but only after a lot of train-
ing, and most of us aren’t very good at it. This is illustrated by typical per-
formances on a logical puzzle called the “Wason selection task” (figure 3.1).

The correct selections are the card with “8” and the brown card. In the
original study, only 10 percent of subjects got the right answer.” But most
subjects had no trouble getting the right answer when the logic test was
grounded in a familiar context (figure 3.2).

Reasoning seems to be domain specific, and the more familiar we are
with a domain, the easier it is for us to solve problems in that domain.
Experience makes it easier to reason within a domain because we can use
examples we have encountered to intuit solutions. In physics, for example,
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Figure 3.1

Each of these four cards has a number on one side and a field of color covering the
entire other side. Which card(s) must you turn over in order to test the truth of the
proposition that if a card shows an even number on one face, then its opposite face
is red? (From “Wason selection task,” Wikipedia.)

Figure 3.2

Each card has an age on one side, and a drink on the other. Which card(s) must be
turned over to test the law that, if you are drinking alcohol, then you must be over
18? (From “Wason selection task,” Wikipedia.)

we learn a domain like electricity and magnetism by solving many prob-
lems, not by memorizing formulas. If human intelligence were based purely
on logic, it should be domain general, which it isn’t.

The fourth clue is that our brains are filled with billions and billions of
tiny neurons that are constantly communicating with one another. This
suggests that, for solutions to the hard problems in artificial intelligence,
we should be looking into computers with massively parallel architectures
rather than those with von Neumann digital architectures through which
data and instructions are fetched and executed one at a time. Yes, it is
true that a Turing machine can compute any computable function given
enough memory and enough time, but nature had to solve problems in real
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time. To do this, it made use of the brain’s neural networks that, like the
most powerful computers on the planet, have massively parallel processors.
Algorithms that run efficiently on them will eventually win out.

Early Pioneers

In the 1950s and 1960s, shortly after Norbert Wiener introduced cyber-
netics, based on communications and control systems in both machines
and living creatures,® there was an explosion of interest in self-organizing
systems. As a small sample of the ingenious creations that explosion gave
rise to, Oliver Selfridge created Pandemonium,* a pattern recognition device
in which feature-detecting “demons” vied with one another for the right to
represent objects in images (a metaphor for deep learning; figure 3.3); and
Bernard Widrow and his student Ted Hoff at Stanford invented the LMS
(least mean squares) learning algorithm,® which, along with its successors,
is used extensively for adaptive signal processing in numerous applications
from noise cancellation to financial forecasting. Here I will focus on just
one of the pioneers of those early decades, Frank Rosenblatt (figure 3.4),
whose perceptron is the direct antecedent of deep learning.®

Learning from Examples

Undeterred by our lack of understanding about brain function, neural net-
work Al pioneers plunged ahead with cartoon versions of neurons and how
they are connected with one another. Frank Rosenblatt at Cornell Univer-
sity (figure 3.4) was one of the earliest to mimic the architecture of our
visual system for automatic pattern recognition.” He invented a deceptively
simple network called a “perceptron,” a learning algorithm that could learn
how to classify patterns into categories, such as letters of the alphabet.
Algorithms are step-by-step procedures that you follow to achieve particu-
lar goals, much as you would a recipe to bake a cake (chapter 13 will explain
algorithms in general).

If you understand the basic principles for how a perceptron learns to
solve a pattern recognition problem, you are halfway to understanding how
deep learning works. The goal of a perceptron is to determine whether an
input pattern is a member of a category, such as cats, in an image. Box
3.1 explains how the inputs to a perceptron are transformed by a set of
weights from the input units to the output unit. The weights are a measure
of the influence that each input has on the final decision made by the out-
put unit. But how can we find a set of weights that can correctly classify
inputs?
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COGRITIVE DEMONS

IMAGE
DEMONS

Figure 3.3

Pandemonium. Oliver Selfridge imagined that there were demons in the brain that
were responsible for extracting successively more complex features and abstractions
from sensory inputs, resulting in decisions. Each demon at each level is excited if it
is a match to input from an earlier level. The decision demon weighs the degree of
excitement and importance of its informants. This form of evidence evaluation is a
metaphor for current deep learning networks, which have many more levels. From
Peter H. Lindsay and Donald A. Norman, Human Information Processing: An Introduc-
tion to Psychology, 2nd ed. (New York: Academic Press, 1977), figure 3-1. Wikipedia
Commons: https://commons.wikimedia.org/wiki/File:Pande.jpg.

The traditional way that an engineer solves this problem is to handcraft
the weights based on analysis or an ad hoc procedure. This is labor inten-
sive and often depends on intuition as much as on engineering. An alterna-
tive is to use an automatic procedure that learns from examples, the same
way that we learn about objects in the world. Many examples are needed
including those not in the category, especially if they are similar, such as
dogs if the goal is to recognize cats. The examples are passed to the percep-
tron one at a time and corrections are automatically made to the weights if
there is a classification error.

The beauty of the perceptron learning algorithm is that it is guaranteed
to find a set of weights automatically if such a set of weights exists and
if enough examples are available. The learning takes place incrementally
after each of the examples in the training set is presented and the output
compared with the correct answer. If the answer is correct, no changes are
made to the weights, but if it isn’t correct (1 when it should be 0, or O when
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NEW NAVY DEVICR
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the ém-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and bas coR-|
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—Ilearned to differentiate
between right and left after
fifty ettempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
‘and write, It is expected to he
|finished in about & year at a|
cost of $100,000,

Dr. Frank Rasenblatt, de-
signer of the Perceptron, con-
ducted the demonstration, He
said the machine would be the
first device to think as the hu-
man brain. As do_human be-
i , Perceptron will male mis-!
taésatﬁrst. but will grow
wiser as it geins experience, he|
said, ¢

Dr: Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be,
fired to the planets as mechani-
cal space explorers..’

Figure 3.4

Frank Rosenblatt at Cornell deep in thought. He invented the perceptron, an early
precursor of deep learning networks, which had a simple learning algorithm for clas-
sifying images into categories. Article in the New York Times, July 8, 1958, from a UPI
wire report. The perceptron machine was expected to cost $100,000 on completion
in 1959, or around $1 million in today’s dollars; the IBM 704 computer that cost $2
million in 1958, or $20 million in today’s dollars, could perform 12,000 multiplies
per second, which was blazingly fast at the time. But the much less expensive Sam-
sung Galaxy S6 phone, which can perform 34 billion operations per second, is more
than a million times faster. Photo courtesy of George Nagy.
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Box 3.1
The Perceptron

" out(t)

in(t) <

wo(t) =0

A perceptron is a neural network with one artificial neuron that has an input
layer and a set of connections linking the input units to the output unit.
The goal of a perceptron is to classify patterns presented to input units. The
basic operation performed by the output unit is to sum up the values of each
input (x,) multiplied by its connection strength, or weight (w,), to the output
unit. In the diagram above, a weighted sum of the inputs (Xi;, ., » w; x;) is
compared to the threshold 6 and passed through a step function that gives
an output of “1” if the sum is greater than the threshold and an output of
“0” otherwise. For example, the input could be the intensities of pixels in
an image, or more generally, features that are extracted from the raw image,
such as the outline of objects in the image. Images are presented one at a
time, and the perceptron decides whether or not the image is a member of a
category, such as the category of cats. The output can only be in one of two
states, “on” if the image is in the category or “off” if it isn’t. “On” and “off”
correspond to the binary values 1 and O, respectively. The perceptron learn-
ing algorithm is

OWi=0ox
6 = output—teacher,

where both the output and teacher are binary, so that § = O if the output
is correct , and 6 = +1 or -1 If the output is not correct, depending on the
difference.
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it should be 1), then the weights are changed slightly so that the next time
the same input is given, it is closer to getting the correct answer (box 3.1).
It is important that the changes occur gradually so that the weights can
feel the tugs from all the training examples, and not just from the last one.

If this explanation of perceptron learning isn’t clear, there is a much
neater geometric way to understand how a perceptron learns to classify
inputs. For the special case of two inputs, it is possible to plot the inputs
on a two-dimensional graph. Each input is a point in the graph and the
two weights in the network determine a straight line. The goal of learn-
ing is to move the line around so that it cleanly separates the positive and
negative examples (figure 3.5). For three inputs, the space of inputs is three-
dimensional, and the perceptron specifies a plane that separates the posi-
tive and negative training examples. The same principle holds even in the
general case, when the dimensionality of the space of inputs can be quite
high and impossible to visualize.

Eventually, if a solution is possible, the weights will stop changing,
which means the perceptron has correctly classified all of the examples
in the training set. But, in what is called “overfitting,” it is also possible
that there are not enough examples in the set, and the network has simply
memorized the specific examples without being able to generalize to new
ones. To avoid overfitting, it is important to have another set of examples,
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Figure 3.5

Geometric explanation for how two object categories are discriminated by a percep-
tron. The objects have two features, such as size and brightness, which have values
(x,y) and are plotted on each graph. The two types of objects (pluses and squares) in
the panel on the left can be separated by a straight line that passes between them;
this discrimination can be learned by a perceptron. The two types of objects in the
other two panels cannot be separated by a straight line, but those in the center panel
can be separated by a curved line. The objects in the panel on the right would have to
be gerrymandered to separate the two types. The discriminations in all three panels
could be learned by a deep learning network if enough training data were available.
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called a “test set,” that wasn’t used to train the network. At the end of
training, the classification performance on the test set is a true measure of
how well the perceptron can generalize to new examples whose respective
categories are unknown. Generalization is the key concept here. In real life,
we never see the same object the same way or encounter the same situation,
but if we can generalize from previous experience to new views or situa-
tions, we can handle a broad range of real-world problems.

SEXNET

As an example of how a perceptron can be used to solve a real-world prob-
lem, consider how you would tell a male from a female face, taking away
hair, jewelry, and secondary sexual characteristics such as Adam'’s apples,
which tend to be larger in males. Beatrice Golomb, a postdoctoral fellow in
my lab in 1990, used faces of college students from a database she obtained
as inputs to a perceptron that was trained to classify the sex of a face with
an 81 percent accuracy (figure 3.6).° The faces that the perceptron had dif-
ficulty classifying were also difficult for humans to classify, and members
of my lab achieved an average performance of 88 percent on the same set
of faces. Beatrice also trained a multilayer perceptron (which will be intro-
duced in chapter 8) that achieved a 92 percent accuracy,’ better than people
from my lab. At a talk she gave at the 1991 Neural Information Processing
Systems (NIPS) Conference, she concluded: “Since experience improves
performance, this should suggest that people in the lab need to spend more
time engaged in discriminating sex.” She called her multilayer perceptron
the “SEXNET.” In the question-and-answer period, someone asked whether
SEXNET could be used to detect transvestite faces. “Yes,” said Beatrice, to
which Ed Posner, the founder of the NIPS conferences, retorted, “That
would be the DRAGNET.” "

Figure 3.6

What is the sex of this face—male or female? A perceptron was trained to discrimi-
nate male from female faces. The pixels from the image of a face (top) are multiplied
by the corresponding weights (bottom), and the sum is compared to a threshold. The
size of each weight is depicted as the area of the pixel. Positive weights (white) are ev-
idence for maleness and negative weights (black) favor femaleness. The nose width,
the size of the region between the nose and mouth, and image intensity around the
eye region are important for discriminating males, whereas image intensity around
the mouth and cheekbone is important for discriminating females. From M. S. Gray,
D. T. Lawrence, B. A. Golomb, and T. J. Sejnowski, “A Perceptron Reveals the Face of
Sex,” Neural Computation 7 (1995): 1160-1164, figure 1.
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What makes discriminating male from female faces an interesting task
is that, although we are quite good at it, we can’t articulate exactly what
the differences between male and female faces are. Since no single feature
is definitive, this pattern recognition problem depends on combining evi-
dence from a large number of low-level features. The advantage of the per-
ceptron is that the weights provide clues to which parts of the face are
the most informative about sex (figure 3.6). Surprisingly, the philtrum (the
space between the nose and lips) was the most distinctive feature, which is
noticeably larger in most males. Regions around the eyes (larger in males)
and upper cheeks (larger in females) also had high informational value for
classifying sex. The perceptron weighs evidence from all these locations to
make a decision, and so do we although we might not be able to describe
how we do it.

Rosenblatt’s proof of the “perceptron convergence theorem” in 1957 was
a breakthrough, and his demonstrations were impressive. Backed by the
Office of Naval Research, he built a custom-hardware analog computer with
400 photocells as input, with weights that were variable resistance poten-
tiometers adjusted by motors. Analog signals vary continuously with time,
just like the signals from vinyl phonograph records. Given a collection of
pictures with and without tanks in them, Rosenblatt’s perceptron learned
how to recognize tanks even in new images. This was written up in the New
York Times and caused a sensation (figure 3.4)."

The perceptron inspired a beautiful mathematical analysis of pattern
separation in high-dimensional spaces. When points live in a space that
has thousands of dimensions. we cannot rely on our intuition about dis-
tances between points in the three-dimensional space we live in. The Rus-
sian mathematician Vladimir Vapnik introduced a classifier based on this
analysis, called the “Support Vector Machine,”’” which generalized the
perceptron and is widely used in machine learning. He found a way to
automatically find a flat surface that maximally separates points from the
two categories (figure 3.5, linear). This makes generalization more robust to
measurement error of the points in the space, and, when coupled with the
“kernel trick,” which is a nonlinear extension, the Support Vector Machine
algorithm has become a mainstay in machine learning."

Perceptrons Eclipsed
But there was a limitation that made the perceptron line of research prob-

lematic. The caveat above, “if such a set of weights exists,” raised the
question of what problems can and cannot be solved by perceptrons.
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Embarrassingly simple distributions of points in two dimensions cannot be
separated by a perceptron (figure 3.5, nonlinear). It turned out that the tank
perceptron was not a tank classifier, but a time of day classifier. It is much
more difficult to classify tanks in images; indeed, it cannot be done with
a perceptron. This also shows that, even when a perceptron has learned
something, it may not be what you think it has learned. The final blow
to the perceptron was a 1969 tour de force mathematical treatise, Percep-
trons by Marvin Minsky and Seymour Papert.'* Their definitive geometric
analysis showed that the capabilities of perceptrons are limited: they can
only separate categories that are linearly separable (figure 3.5). The cover of
their book illustrates a geometric problem that Minsky and Papert proved
the perceptron could not solve (figure 3.7). Although, at the end of their
book, Minsky and Papert considered the prospect of generalizing single- to
multiple-layer perceptrons, one layer feeding into the next, they doubted
there would ever be a way to train even these more powerful perceptrons.
Unfortunately, many took this doubt to be definitive, and the field was
abandoned until a new generation of neural network researchers took a
fresh look at the problem in the 1980s.

In a perceptron, each input contributes independent evidence to the
output unit. But what if several inputs need to be combined in ways that
make decisions dependent on the combination and not on each input
separately? This is why a perceptron cannot distinguish whether a spiral
is connected or not: a single pixel carries no information on whether it
is on the inside or the outside. Although in multilayer feedforward net-
works, combinations of several inputs can be formed in intermediate layers
between the input and output units, no one in the 1960s knew how to
train a network with even a single layer of such “hidden units” between
the input and output layers.

Frank Rosenblatt and Marvin Minsky had been classmates at the Bronx
High School of Science in New York City. They debated their radically dif-
ferent approaches to artificial intelligence at scientific meetings, where
participants tilted toward Minsky’s approach. But despite their differences,
each man made important contributions to our understanding of percep-
trons, which is the starting point for deep learning.

When Rosenblatt died in a boating accident in 1971 at age 43, the back-
lash against perceptrons was in full swing, and there were rumors that
he might have committed suicide, or was it an outing gone tragically
wrong?'® What became clear was that a heroic period of discovering a new
way of computing with neural networks was closing; a generation would
pass before the promise of Rosenblatt’s pioneering efforts was realized.
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Expanded Edition

Perceptrons

Marvin L. Minsk:

Sevmour A.

Figure 3.7

The book cover of an expanded edition of Perceptrons. The two red spirals look the
same but they aren’t. The top one is two disconnected spirals, but the bottom one is a
single connected spiral, which you can verify by tracing the insides of the loops with
a pencil. Minsky and Papert proved that a perceptron cannot distinguish between
these two objects. Can you see the difference without tracing? Why not?
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“If I Only Had a Brain” was a song sung by the Scarecrow in the classic
1939 musical film The Wizard of Oz. What the Scarecrow did not know was
that he already had a brain and could hardly have talked or sung without
one, but the brain was only two days old, and his real problem was a lack
of experience. With time, he learned about the world and was eventually
recognized as the wisest man in all of Oz, wise enough to know his own
limitations. In contrast, the Tin Woodman sang “If I Only Had a Heart.” He
and the Scarecrow debated which was more important, having a brain or
having a heart. In Oz, as well as in the real world, cognition and emotion,
both products of the brain, work together in a delicate balancing act with
learning to create human intelligence. Drawing on this classic musical, the
theme of this chapter is “If Al Only Had a Brain and a Heart.”

How the Brain Works

Geoffrey Hinton (figure 4.1) and I had similar beliefs about the promise
of neural network models when we met at a workshop that Geoffrey orga-
nized in 1979. We became fast friends and later collaborated on the discov-
ery of a new type of neural network model called the “Boltzmann machine”
(discussed in chapter 7), which would break a logjam that had been holding
back learning in multilayer network models for a generation.

Every few years, I get a call from Geoffrey that begins with “I figured out
how the brain works.” Each time, he tells me about a clever new scheme
for improving neural network models. It has taken many such schemes and
refinements for deep learning in multilayered neural networks to achieve a
level of performance comparable to humans in recognizing speech on cell
phones and objects in photos. The public became aware of these capabili-
ties just a few years ago; they are now well known, but they were a long
time in coming.
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Figure 4.1

(A) Geoftrey Everest Hinton early in his career. His middle name comes from a rela-
tive, George Everest, who surveyed India and figured out how to measure the height
of the world’s tallest mountain, which now bears his name. (B) Hinton in 1994.
These two photos were taken fifteen years apart. Courtesy of Geoffrey Hinton.

Geoffrey received an undergraduate degree in psychology at the Univer-
sity of Cambridge and a doctorate in artificial intelligence from the Uni-
versity of Edinburgh. His thesis advisor was Christopher Longuet-Higgins,
a distinguished chemist who invented an early network model of an asso-
ciative memory. At that time, the dominant paradigm in artificial intel-
ligence was based on writing programs that used symbols, logic, and rules
to codify intelligent behavior; cognitive psychologists had adopted this
approach to understanding human cognition, and especially language.
Geoffrey was swimming against the tide. No one could have predicted that
he would someday figure out how the brain—or at least something like
the brain—works. His lectures are compelling, and he can explain abstract
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mathematical concepts with a clarity that requires little math to grasp. His
wit and self-effacing humor are charming. Geoffrey is also by nature highly
competitive, especially when it comes to the brain.

When we first met, Geoffrey was a postdoctoral fellow at the University
of California, San Diego (UCSD), in the Parallel Distributed Processing (PDP)
Group led by David Rumelhart and James McClelland. Geoffrey believed
that networks of simple processing units, working together in parallel and
learning from examples, were a better way to understand cognition. He was
a central figure in the PDP Group, which was exploring how words and lan-
guage could be understood as the spread of activity distributed over a large
number of nodes in a network.

The traditional approach to language in cognitive science is based on
symbolic representations. The word “cup,” for example, is a symbol that
stands for the concept of a cup, and not just any cup, but all cups. The
beauty of symbols is that they allow us to compress complex ideas and
manipulate them; the problem with symbols is that they are so compressed
that it is difficult to ground them in the real world, where cups come in
an infinite variety of forms, shapes, and sizes. There is no logical program
that can specify what is and what is not a cup or that can recognize cups
in images, even though most of us humans are quite good at knowing a
cup when we see it. Abstract concepts like justice and peace are even more
difficult for a logical program to pin down. An alternative is to represent
cups by activity patterns over a very large population of neurons, which
can capture both the similarities and differences between concepts. This
endows a symbol with a rich internal structure that reflects its meaning.
The problem was that no one in 1980 knew how to create these internal
representations.

Geoffrey and I were not the only ones who believed in the potential of
network models to mimic intelligent behavior in the 1980s. A number of
researchers around the world, most of them toiling in isolation, shared our
belief and went on to develop specialized network models. Christoph von
der Malsburg, for one, developed a model of pattern recognition based on
linking together artificial neurons that fired spikes' and later demonstrated
that this approach could recognize faces in images.” Kunihiko Fukushima at
Osaka University, for another, invented the Neocognitron,® a multilayered
network model based on the architecture of the visual system that used con-
volutional filters and a simple form of Hebbian plasticity and was a direct
precursor of deep learning networks. And, for a third, Teuvo Kohonen, an
electrical engineer at Helsinki University, developed a self-organizing net-
work that could learn to cluster similar inputs into a two-dimensional map,
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representing different speech sounds, for example, by different processing
units in the map, with similar inputs activating neighboring regions of the
output space.* A major advantage of the Kohonen network model was that
it did not require a category label for each input (generating labels to train
supervised networks is expensive). Kohonen had only one arrow in his
quiver, but it was a very fine arrow.

In a promising early attempt to systematize probabilistic networks, Judea
Pearl at the University of California, Los Angeles (UCLA), introduced belief
networks that linked the items in the network with probabilities, such as
the probabilities that the grass is wet because the sprinkler came on or
because it rained.’ Although Pearl’s network model was a powerful frame-
work for keeping track of cause and effect in the world, manually assigning
all of the required probabilities proved impracticable. A breakthrough was
needed for automatically finding the probabilities with learning algorithms
(as will be discussed in part II).

These and other network-based models all had one fatal flaw in com-
mon: none of them worked well enough to solve problems in the real
world. Moreover, the pioneers who developed them rarely collaborated
with one another, making it even more difficult to make progress. As a
consequence, very few in the leading Al research centers at MIT, Stanford,
and Carnegie Mellon took neural networks seriously. Rule-based symbol
processing received most of the funding—and generated most of the jobs.

Early Pioneers

In 1979, Geoffrey Hinton and James Anderson, a psychologist at Brown
University, organized the Parallel Models of Associative Memory workshop
in La Jolla, California.® Most participants were meeting one another for
the first time. As a postdoctoral fellow of neurobiology at Harvard Medi-
cal School who had written only a few highly technical papers on neural
networks published in obscure journals, I was surprised to be invited to the
workshop. Geoffrey later told me that he had vetted me with David Marr
(figure 4.2, middle), a towering figure in neural network modeling and a
leading visionary at the MIT AI Lab. I first met Marr in a small workshop at
Jackson Hole, Wyoming, in 1976. We had similar interests and he invited
me to visit him and give a talk at MIT.

Marr received a bachelor’s degree in mathematics and his doctorate
in physiology from Cambridge University. His doctoral advisor was Giles
Brindley, a physiologist who specialized on the retina and color vision but
also was known for his work on musicology and the treatment of erectile
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Figure 4.2
(Left to right) Tomaso Poggio, David Marr, and Francis Crick hiking in California

in 1974. Francis enjoyed long discussions with visitors on many scientific issues.
Courtesy of The Salk Institute for Biological Studies.

dysfunction. He famously dropped his pants during a lecture at a meeting
of the American Urological Association in Las Vegas, Nevada, to demon-
strate the effectiveness of a chemically-induced erection. Marr’s doctoral
dissertation described a neural network model of learning in the cerebel-
lum, a part of the brain that is involved with fast motor control. He also
developed neural network models of the hippocampus and the cerebral cor-
tex, described in dense papers that have proven to be prescient.’”

When I first met Marr at Jackson Hole, he had already moved to MIT,
where he was working on vision and where, as a charismatic figure, he had
attracted talented students to work with him. Pursuing a bottom-up strat-
egy, he started at the retina, where light is converted to electrical signals,
and asked how signals in the retina encoded the features of objects and
how the visual cortex represented the surfaces and boundaries of objects.
He and Tomaso Poggio (figure 4.2, left) developed an ingenious recurrent
neural network model for stereo vision with feedback connections to detect
the depth of an object from the slight lateral displacements of the images of
dots in the two eyes in random-dot stereograms.® Binocular depth percep-
tion is the basis for how Magic Eye images pop out at you.’

Two years after Marr died of leukemia in 1980 at the age of 35, the book
he was working on at the time, Vision, was published posthumously.'® Iron-
ically, despite the bottom-up approach Marr took to his research on vision,
starting with the retina and modeling each succeeding stage of visual proc-
essing, his book is best known for advocating a top-down strategy, starting
with a computational analysis of the problem to be solved, followed by
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building an algorithm to solve the problem, and finally by implementing
the algorithm in hardware. But, even though this may be a good way to
explain things after you have figured them out, it isn’t such a good way
to discover what’s going on in the brain. The difficulty is in the first step,
in deciding on what problem the brain is solving. Our intuition is often
misleading, particularly when it comes to vision; we are exceptionally good
at seeing, but the brain hides all the details from us. As a consequence, a
pure top-down strategy is flawed, but so is a pure bottom up strategy. (Later
chapters will explore how progress was made in understanding vision work-
ing from the inside out with learning algorithms.)

Also attending Hinton and Anderson’s workshop in La Jolla was Francis
Crick (figure 4.2, right), who with James Watson at Cambridge University
had discovered the structure of DNA in 1953. Decades after his discovery, in
1977, Crick had moved to the Salk Institute for Biological Studies in La Jolla
and shifted his research focus to neuroscience. He would invite researchers
to visit him and have a long discussion on many topics in neuroscience,
especially on vision, and David Marr was one of those visitors. At the end
of Marr’s book, there is a revealing discussion in the form of a Socratic
dialogue, a dialogue I later learned had arisen from Marr’s discussions with
Crick. On moving to the Salk Institute in 1989, I, too, came to appreciate
the value of having a dialogue with Crick.

George Boole and Machine Learning

In 1854, a self-taught British schoolteacher who had five daughters, some of
whom were mathematically inclined, wrote a book entitled An Investigation
of the Laws of Thought, which was the mathematical foundation for what is
now called “Boolean logic.” George Boole’s insights into how to manipulate
logical expressions are at the heart of digital computing and were a natu-
ral starting point for fledgling efforts in artificial intelligence in the 1950s.
Geoffrey Hinton, who happens to be Boole’s great-great-grandson, is proud
to have a pen once used by Boole and handed down in his family.

In preparing a talk, I discovered that the full title of Boole’s famous
book is An Investigation of the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities (figure 4.3). Although best
remembered for its insights into logic, Investigation also has much to say
about probability theory, which is at the heart of modern machine learning
and can describe the uncertainties in the real world far better than logic.
So Boole is also one of the fathers of machine learning. What an irony that
a forgotten side of his thinking should flower 250 years later through his
great-great-grandson. Boole would have been proud of him.
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Figure 4.3

Although The Laws of Thought by George Boole is famous for investigating logic as a
basis for thinking, note that it is also about probabilities. These two areas of math-
ematics inspired symbol processing and machine learning approaches to artificial
intelligence, respectively.

The Humpty Dumpty Project

As a graduate student in the Physics Department at Princeton, I approached
the problem of understanding the brain by writing down equations for net-
works of nonlinearly interacting neurons and by analyzing them," much
as physicists have over the centuries used mathematics to understand the
nature of gravity, light, electricity, magnetism, and nuclear forces. Every
night before bed, I would pray: “Dear Lord, let the equations be linear, the
noise be Gaussian, and the variables be separable.” These are the condi-
tions that lead to analytic solutions, but because neural network equations
turn out to be nonlinear, the noise associated with them non-Gaussian, and
the variables nonseparable, they do not have explicit solutions. Moreover,
simulating the equations on computers at that time was impossibly slow
for large networks; even more discouraging, I had no idea whether I had
the right equations.
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Taking courses at Princeton, I discovered that exciting progress was being
made by neuroscientists, whose relatively young science was founded forty-
five years ago. Before that, research on the brain was carried out in many
disciplines: biology, psychology, anatomy, physiology, pharmacology, neu-
rology, psychiatry, bioengineering, and many others. At the first meeting
of the Society for Neuroscience in 1971, Vernon Mountcastle personally
greeted everyone at the door.'” Today there are over 40,000 members of the
society, and 30,000 show up at the annual meeting. I met this legendary
neurophysiologist, who had discovered the cortical column and who had a
formidable personality, at the Johns Hopkins University when I moved to
the Department of Biophysics there for my first job in 1982."* I would work
closely with Mountcastle in planning the Mind/Brain Institute at Johns
Hopkins, the first institute of its kind in the world, established in 1994.

There are many different levels of investigation in the brain (figure 4.4),
and important discoveries have been made at each of them; integrating all
that knowledge is a formidable problem. This is reminiscent of the Humpty
Dumpty nursery rhyme:

Humpty Dumpty sat on a wall,

Humpty Dumpty had a great fall.

All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

Although neuroscientists are very good at taking the brain apart, putting
the pieces together poses a more difficult problem, one that requires syn-
thesis rather than reduction, which is what I wanted to do. But first I had to
know what the parts are, and the brain has lots of parts.

In a graduate seminar taught by Charles Gross, a psychologist who
studied the monkey visual system at Princeton, I was impressed with the
progress that had been made by David Hubel and Torsten Wiesel at Har-
vard Medical School in recording from single neurons in the visual cortex.
If physics wasn’t the royal road to understanding how the brain works,
maybe neuroscience would be. For their pioneering work in the primary
visual cortex, Hubel and Wiesel would receive a Nobel Prize in Physiology
or Medicine in 1981. (Their discoveries, discussed in chapter 5, are the basis
for deep learning, the subject of chapter 9.)

What | learned at Woods Hole

After finishing my doctorate in physics at Princeton in 1978, I attended a
ten-week, in-depth summer course on experimental neurobiology at the



Brain-style Computing 57

Levels of Investigation

|

im CNS

}

10cm | Systems

}

icm Maps

i

1mm | Networks

i

100 ym Neurons

]

1pum | Synapses

]

1A | Molecules

Figure 4.4

Levels of investigation in the brain. (Left) The spatial scale ranges from the molecular
level at the bottom to the entire central nervous systems (CNS) at the top. Much
is known about each of these levels, but the least understood is the network level
with its small groups of highly interconnected neurons—the level modeled by artifi-
cial neural networks. (Right) Icons for synapse (bottom), simple cell in visual cortex
(middle), and hierarchy of cortical areas in the visual cortex (top). Adapted from P. S.
Churchland, and T. J. Sejnowski, “Perspectives on Cognitive Neuroscience,” Science,
242 (1988): 741-745, figure 1.
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Marine Biological Laboratory at Woods Hole. I arrived on the first day of the
course in a casual blue sports coat and neatly pressed khaki pants, only to
be taken aside by Story Landis, one of the course instructors, who bought
me my first pair of jeans. Story was on the faculty in the Harvard Depart-
ment of Neurobiology at the time and went on to become the director of
the National Institute for Neurological Disorders and Stroke at the National
Institutes of Health. She still reminds me of this incident.

After the summer course, I stayed on for a few weeks in September to
wrap up a project I had started. Sharks and rays (which include skates) are
able to sense very weak electrical fields; indeed, they can detect the sig-
nal from a 1.5-volt battery clear across the Atlantic Ocean. With this sixth
sense, skates can navigate by the weak electrical signals from their motion
through the earth’s magnetic field, which generates microvolt signals in
their electroreceptors. My project yielded spectacular electron microscope
images of the skate electroreceptor.'

I was taking photos in the basement of Loeb Hall at Woods Hole when
I received an unexpected call from Stephen Kuffler, who founded the
Neurobiology Department at Harvard Medical School. Kuffler is a legend
in neuroscience, and getting an offer to work with him as a postdoctoral
fellow in his lab was life changing. I moved to Boston after finishing a brief
postdoctoral fellowship with Alan Gelperin on mapping metabolic activity
in the pedal ganglion of the garden slug Limax maximus."” 1 will never be
able to eat a snail again without thinking about its brain. Alan descended
intellectually from a line of neuroethologists, who study the neural basis
of animal behavior. What I learned was that the so-called simpler nervous
systems in invertebrates were actually more complex than those in organ-
isms higher up the evolutionary ladder since invertebrates had to survive
with many fewer neurons, each of which was highly specialized. I also came
to understand that nothing in neuroscience makes any sense except in the
light of behavior.'

In Kuffler’s lab, I studied a late slow excitatory response at a synapse in
the bullfrog sympathetic ganglion (figure 4.5) that was 60,000 times slower
than the fast millisecond excitatory response at another synapse on the
same neuron.'” These ganglia contain the neurons that form the output
of the bullfrog’s autonomic nervous system, which regulates glands and
internal organs. After stimulating the nerve to the synapse, I could walk to
the coffeepot and back before the synaptic input to the neuron had reached
a peak, which it would in around 1 minute, taking 10 minutes to recover.
Synapses are the fundamental computational elements in the brain, and
the diversity of synapse types is telling. This experience taught me that
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Figure 4.5
Bullfrog sympathetic ganglion cell. As neurons, these cells receive inputs from the

spinal cord and innervate glands in the skin of bullfrogs. They are large and their
electrical signals are easy to record with a microelectrode (bottom). They have no
dendrites and can be electrically stimulated by a nerve (top, background) or with
chemicals (top, pair of micropipettes). Stimulating the nerve elicits three different
synaptic signals: a fast millisecond excitatory response, similar to that at the neuro-
muscular junction; a slower excitatory response that peaks in 10 seconds and lasts 1
minute; and a late slow excitatory response that peaks in 1 minute and last 10 min-
utes. This illustrates the broad range of times scales that are present in even the sim-
plest neurons. From S. W. Kuffler, and T. J. Sejnowski, “Peptidergic and Muscarinic
Excitation at Amphibian Sympathetic Synapses,” Journal of Physiology 341 (1983):
257-278, plate 1.
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complexity might not be the royal road to understanding brain function.
To understand the brain, I had to understand how, through evolution,
nature had solved a large collection of problems long ago and passed those
solutions on from species to species up the evolutionary ladder. We have
ion channels in our brains that first evolved in bacteria billions of years ago.

The Missing Link

But if physics was too simple and biology too complex, where should I
look for guidance? Unlike forces in physics, brain circuits have a purpose,
which is to solve computational problems, like seeing and moving around,
in order to survive in the world. Even a perfect physical model of how a
neuron worked wouldn't tell us what its purpose was. Neurons are in the
business of processing signals that carry information, and computation was

Figure 4.6

Terry Sejnowski and Geoffrey Hinton discussing network models of vision in Boston
in 1980. This was one year after Geoffrey and I met at the Parallel Models of Asso-
ciative Memory workshop in La Jolla and one year before I started my lab at Johns
Hopkins in Baltimore and Geoffrey started his research group at Carnegie Mellon in
Pittsburgh. Courtesy of Geoffrey Hinton.
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the missing link in trying to understand nature. I have over the last forty
years been pursuing this goal, pioneering a new field called “computational
neuroscience.”

After his stint as a postdoctoral fellow at UCSD, Geoffrey Hinton returned
to England, where he had a research position with the Applied Psychology
Unit of the Medical Research Council (MRC) at Cambridge. One day in
1981, he received a call at 2:00 a.m. from someone who introduced him-
self as Charles Smith, president of the System Development Foundation
in Palo Alto, California.’® Smith said that his foundation wanted to fund
potentially promising but risky research that was unlikely to succeed and
Geoffrey had been highly recommended to him. Geoffrey wasn’t sure that
this was for real. Good friend that he is, Geoffrey mentioned my research to
Smith, telling him it was even more unlikely to succeed than his.

The foundation was indeed real and provided us with our first grants,
which greatly speeded up our research. We could now afford to buy faster
computers and to pay the students working with us. Geoffrey replaced his
Apple I with a fancy Lisp machine'” when he moved to Carnegie Mellon in
Pittsburgh; I briefly had more computer power than the entire Computer
Science Department when I moved to Johns Hopkins in Baltimore.*® I was
also able to buy the first modem that linked Hopkins to the ARPANET, a
precursor to the Internet, so that Geoffrey and I could e-mail each other.
We could not have asked for a better start to our careers as we set off in new
directions (figure 4.6). I was fortunate to be funded over the years by the
Office of Naval Research, which also supported Frank Rosenblatt and many
other neural network researchers.






5 Insights from the Visual System

One of my earliest memories, before going to kindergarten, was peering
over pieces of a jigsaw puzzle and matching them using shape, color, and
context as cues. My parents would amaze their friends at parties by how
quickly their toddler son could put jigsaw puzzles together. I did not know
it then, but my brain was doing what brains do best—solving problems
with pattern recognition. Science is filled with problems that are like puz-
zles with missing pieces and vague hints to the underlying picture. How
brains solve problems is the ultimate puzzle.

The Helmholtz Club was a small cadre of vision scientists in Southern
California from the San Diego, Los Angeles, and Irvine campuses of the
University of California, Caltech, and the University of Southern Califor-
nia, who would meet each month in the afternoon on the Irvine campus.'
Hermann von Helmholtz was a nineteenth-century physicist and physician
who developed a mathematical theory and an experimental approach to
vision that forms the basis for our current understanding of visual percep-
tion. As the club’s secretary, it fell to me to recruit an outside speaker to
give a talk to some fifteen to twenty members and their guests. This would
be followed by a second talk by a club member. The talks were interac-
tive, with ample time for in-depth discussion. One of the outside speakers
expressed his surprise at those asking questions: “They actually wanted to
know the answers.” Intellectual high points for all who attended them,
these monthly meetings were master classes in vision.

Vision is our most acute and also our most studied sense. With two fron-
tal eyes, we have exquisite binocular depth perception, and half of our cor-
tex is visual. The special status of vision is captured by the saying “Seeing
is believing.” Ironically, that we can see so well has blinded us to the enor-
mous computational complexity of the vision problem, solved by nature
over hundreds of millions of year of evolution (as noted in chapter 2). The
organization of the visual cortex has served as the inspiration for the most
successful deep learning networks.
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In one-tenth of a second, ten billion neurons in our visual cortex work-
ing together in parallel can identify a cup in a cluttered scene, even though
we may never have seen that particular cup before and even when it might
be in any location, of any size, and in any orientation to us. As a graduate
student at Princeton, I was fascinated by vision and worked for a summer
in the laboratory of Charles Gross, who studied the inferotemporal cortex
of monkeys (figure 5.1), where he had discovered neurons that respond to
complex objects like faces and, famously, toilet brushes.’

While at the Department of Neurobiology of the Harvard Medical
School, I worked with Stephen Kuffler, who had earlier discovered how the
ganglion cells in the retina encode visual scenes, and who probably would
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Figure 5.1

Schematic of the flow of information through the visual system of a macaque mon-
key. The arrows indicate projections between visual areas starting at the retina, with
delays in milliseconds in the arrival of visual information occurring at each stage of
visual processing. Visual perception in the macaque is similar to ours and we have
the same stages of visual processing. LGN: lateral geniculate nucleus; V1: primary
visual cortex; V2: secondary visual cortex; V4: visual area 4; AIT and PIT: anterior
and posterior inferotemporal cortex; PFC: prefrontal cortex; PMC: premotor cortex;
MC: motor cortex. From S. J. Thorpe and M. Fabre-Thorpe, “Seeking Categories in the
Brain,” Science 291, no. 5502 (2001): 261.
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have received the Nobel Prize in Physiology or Medicine with David Hubel
and Torsten Wiesel in 1981 for his discoveries in the retina, had he not
died the year before. After moving to the Salk Institute in 1989, I would
work with Francis Crick, who had shifted his research focus from molecular
genetics to neuroscience in 1977 and was intent on finding the neural cor-
relates of visual awareness. It was thus my privilege to be in the company of
some of the greatest vision scientists of that time.

Vision from the Bottom Up

If we follow the signals generated by an image into the brain, we can see
how it is transformed over and over again as it passes from one stage of
processing to the next (figure 5.1). Vision starts in the retina, where photo-
receptors convert light into electrical signals. There are two layers of neu-
rons within the retina that process the visual signals in space and time,
ending with the ganglion cells that project out into the optic nerves.

In a classic 1953 experiment whose results hold for all mammals, Ste-
phen Kuffler (figure 5.2, left) recorded from the output neurons of the ret-
ina of a living cat while stimulating them to fire spikes in response to spots
of light. He reported that some output neurons responded to a spot of light
in their center when it went on, and others responded to a spot of light in
their center when it went off. But, just outside the centers, the surrounding
annulus had the opposite polarity: on-centers with off-surrounds and off-
centers with on-surrounds (figure 5.3). The responses of ganglion cells to
patterns of light are called “receptive field” properties.

I once asked Kuffler, whose main scientific interest was in the properties
of synapses between neurons, what motivated him to study the retina. He
said that since his lab at Johns Hopkins was in the Wilmer Eye Institute at
the time, he felt guilty he was not working on eyes. Having pioneered the
study of single ganglion cells in the retina, he handed off the project to two
postdoctoral fellows in his lab, David Hubel and Torsten Wiesel (figure 5.2,
right and center), and advised them to follow the signals into the brain.
In 1966, Kuffler and his postdoctoral fellows moved to Harvard Medical
School to start a new Department of Neurobiology.

Vision in the Cerebral Cortex
Hubel and Wiesel discovered that cortical neurons responded much bet-

ter to oriented bars of light and contrast edges than to spots of light. The
circuits in the cortex had transformed the input signals. They described
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Figure 5.2

(Left to right) Stephen Kuffler, Torsten Wiesel, and David Hubel. The Department
of Neurobiology at Harvard Medical School was founded in 1966, and this photo is
from the early years. I never saw any of them wearing a tie in the lab on a workday so
this must have been a special occasion. Courtesy of Harvard Medical School.

two principal types of cells: the oriented simple cell, which had on- and
off- regions like the ganglion cells (figure 5.4), and the oriented complex
cell that responded uniformly to oriented stimuli anywhere in the receptive
field of the neuron (figure 5.5).

Each cortical neuron in the visual cortex can be thought of as a visual
feature detector, which only becomes active when it receives inputs above
a certain threshold for its preferred feature in a particular patch of the
visual field. The feature each neuron prefers is determined by its connectiv-
ity with other neurons. The neocortex of mammals has six specialized lay-
ers. Hubel and Wiesel also discovered that the inputs from the two eyes are
organized in alternating left, right columns in the middle layer (4) of the
cortex, to which inputs originating from a relay station in the thalamus
project. Monocular neurons in layer 4 project to neurons in the upper lay-
ers (2 and 3) that receive binocular inputs, which in turn project upstream
to other cortical areas and downstream to the bottom layers (5 and 6) that
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Figure 5.3

Response properties of ganglion cells in the retina. These two donuts represent the
responses of two types ganglion cells in the retina that send coded messages to the
brain so you can see. For the on-center type, a spot of light in the center coming on
(+) and a spot of light in the annulus around the center going off (-) produce a burst
of spikes. The opposite holds for the off-center type, in which a spot of light in the
center going off (-) and a spot of light in the annulus around the center coming on
(+) produce a burst of spikes. The changes in illumination carry important informa-
tion about moving stimuli and contrast boundaries around an object. These proper-
ties were discovered by Stephen Kuffler in 1953.

project subcortically. The preferred orientation and ocular preference of
every cell in a column is the same and varies smoothly across the cortex
(figure 5.6).

Synapse Plasticity

If one eye of a cat is closed during the first few months of its life, cor-
tical neurons that normally would be driven by both eyes become mon-
ocular, exclusively driven by the open eye.* Monocular deprivation drives
changes in the strengths of synapses in the primary cortex, where inputs
to neurons receive converging inputs from the two eyes for the first time.
After the critical period of cortical plasticity in the primary visual cortex is
over, the closed eye can no longer influence cortical neurons, resulting in
a condition called “amblyopia.” Although, uncorrected, misalignment or
“strabismus,” which is common in babies, will greatly reduce the number
of cortical neurons that are binocular and preclude binocular depth percep-
tion,® a timely operation to align the eyes within the critical period can
rescue binocular neurons.

Monocular deprivation is an example of the high degree of plasticity
that is present during the early stages of development as the environment
molds synaptic connections between neurons in the cortex and other parts
of the brain. These activity-dependent changes ride on top of the continual
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Figure 5.4

Receptive field for a simple cell in the cat primary visual cortex. This figure is from
the 1962 paper by Hubel and Wiesel that discovered simple cells. Triangles are loca-
tions in the visual field where the onset a spot of light produces an on-response, and
crosses are where the offset of a spot of light produces an off-response. (A) On-center
cell in the retina (compare with figure 5.3, left). (B) Off-center cell in the retina
(compare with figure 5.3, right). (C-G). Variety of simple cell receptive fields in the
primary visual cortex, all of which are elongated compared to receptive fields in the
retina, and with more complex arrangements of on-regions and off-regions. From
D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Func-
tional Architecture in the Cat’s Visual Cortex,” Journal of Physiology 160, no. 1 (1962):
106-154.2, figure 2.

renewal that occurs in all cells. Even though most of the neurons in our
brains are the same ones we had at birth,° nearly every component of those
neurons and the synapses that connect them turns over every day. Proteins
are replaced as they wear out, and lipids in the membrane are renewed.
With so much dynamic turnover, it is a mystery how our memories are
maintained over our lifetimes.

There is another possible explanation for the apparent longevity of
memories: they may be like scars on our bodies that have survived as
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Figure 5.5

Responses from a complex cell in the cat primary visual cortex. This figure is from the
1962 paper by Hubel and Wiesel that discovered complex cells. A long, narrow black
bar evokes a volley of spikes (vertical ticks) wherever it is placed anywhere within the
receptive field (dashed lines) of a complex cell, provided the orientation is correct
(upper three records). A non-optimal orientation gives a weaker response or none at
all (lower two record). From D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocu-
lar Interaction and Functional Architecture in the Cat’s Visual Cortex,” Journal of
Physiology 160, no. 1 (1962): 106-154.2, figure 7.

markers of past events in our lives. The place to look for these markers is
not inside neurons, where there is constant turnover, but outside, in the
space between neurons, where the extracellular matrix, made from proteo-
glycans that are like the collagen in scar tissue, is tough material that lasts
many years.” If this conjecture is ever proven to be true, it means that our
long-term memories are embedded in the brain’s “exoskeleton,” and we
have been looking for them in the wrong places.®

Synapses contain many hundreds of unique proteins that control the
release of neurotransmitters and the activation of receptors on the receiving
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Figure 5.6

Ice cube model of a column of neurons in primary visual cortex. In a vertical penetra-
tion all neurons have the same orientation preference and ocular dominance. Under
each square millimeter of cortex there is a complete set of orientations that change
slowly across the surface of the cortex (front side of cube) and inputs from both eyes
(right side of cube). From D. Hubel, Eye, Brain and Vision (New York: W. H. Freeman
and Company, 1988), 131.

neuron. In most cases, synaptic strengths can be selectively increased or
decreased over a wide range, which, in the cortex, is a factor of 100. (Exam-
ples of synaptic learning algorithms that have been discovered in the brain
will be discussed in later chapters.) Even more remarkable, new synapses are
constantly being formed in the cortex and old ones removed, making them
among the most dynamic organelles in the body. There are around 100 dif-
ferent types of synapses in the brain, with glutamic acid the most common
excitatory neurotransmitter in the cortex and another amino acid, gamma-
aminobutyric acid (GABA), the most common inhibitory transmitter. There
is also a wide range of time courses for the electrochemical influences that
these neurotransmitter molecules have on other neurons. For example, the
bullfrog sympathetic ganglion cell discussed in chapter 4 has synapses with
time scales ranging from milliseconds to minutes.

Shape from Shading

Steven Zucker (figure 5.7), whose research focus is on a blend of computer
vision and biological vision, has been working on a book to explain how
vision works for as long as I have known him, which is more than thirty
years. The problem is that Steve keeps discovering new things about vision
and, as it did for Tristram Shandy, the protagonist of Laurence Sterne’s
novel, the end of his book keeps receding into the future the more that he
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Figure 5.7
Steven Zucker at Yale University lit from the top right side of the picture. From the
variation in the shading on his sweater you can perceive the shapes of the folds. The

equations on the blackboard behind him, inspired by the visual cortex of monkeys,
explain how. We see the same perceived shapes independently of the light source.
Courtesy of Steven Zucker.

discovers. His approach to vision is based on the exquisitely regular struc-
ture of the primary visual cortex (figure 5.6), a structure unlike any found
elsewhere in the cortex, where neurons are organized in an almost mosaic-
like arrangement, begging for a geometrical interpretation. Most research-
ers in computer vision want to recognize objects by segmenting them from
the background and identifying a few diagnostic features.

Steve was more ambitious and wanted to understand how we extract
the shape of objects from surface shading and telltale signs of creases and
folds. In an interview at the annual meeting of the Society for Neurosci-
ence in 2006, Frank Gehry, the architect who designs buildings that look
like ship’s sails (figure 5.8), was asked how he got ideas for his buildings.’
He replied that his inspiration came from looking at shapes of crumpled
paper. But how does our visual system piece together the complex shape of
the crumpled paper from the complex pattern of folds and shaded surfaces?
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How do we perceive the shifting shapes of the surfaces on the Guggenheim
Museum in Bilbao (figure 5.8)?

Steve Zucker recently was able to explain how we see folds in shaded
images, based on the close relationship between the three-dimensional
contours of the surface as seen on contour maps of mountains and the
constant-intensity contours on images (figure 5.9)."° The link is provided by
the geometry of surfaces." This explains the mystery of why our perception
of shape is so insensitive to differences in the lighting and the surface prop-
erties of objects. It may also explain why we are so good at reading contour
maps, where the contours are made explicit, and why we need only a few
special internal lines to see the shapes of objects in cartoons.

In 1988, Sidney Lehky and I asked whether we could train a neural net-
work with one layer of hidden units to compute the curvature of shaded
surfaces.'””> We succeeded, and, to our surprise, the hidden units behaved
like simple cells. But, on closer inspection, we discovered that not all of
these “simple cells” were created equal. By looking at their projections to
the output layer, which was trained to compute the curvature using a learn-
ing algorithm (discussed in chapter 8), we found that some of the hid-
den units were being used to decide between positive curvature (bulge) and
negative curvature (bowl; figure 5.10). Like some simple cells, these units

Figure 5.8

Guggenheim Museum in Bilbao, Spain, designed by Frank Gehry. Shading and reflec-
tions from curved surfaces give a strong impression of form and motion. Tiny people
on the walkway calibrate the scale of the edifice.
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Figure 5.9

Altitude contours of a surface (top left) compared with isophotes (contours of con-
stant intensity) of an image of the same surface (bottom left). Both give rise to the
same parcellation between critical points as shown to the right of the contours. From
Kunsberg and Zucker, “Critical Contours: An Invariant Linking Image Flow with
Salient Surface Organization,” figure 5. Courtesy of Dr. A. G. Gyulassy.

Figure 5.10

Curvature from shading. Our visual system can extract the shape of an object from
the slowly varying changes in the brightness across an image within the bounding
contour. You see eggs or egg cartons depending on direction of shading and your
assumption about the direction of lighting (usually assumed to be overhead). Turn
this book upside down to see them reverse. From V. S. Ramachandran, “Perception
of Shape from Shading,” Nature 331, no. 6152 (1988), figure 2.
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were detectors; they tended to have either low activity or high activity, a
bimodal distribution. By contrast, the other units in the hidden layer had
graded responses and were functioning as filters that signaled to the output
units the direction and magnitude of curvature.

The conclusion was a surprise: the function of a neuron is determined
not simply by how it responds to inputs, but also by the neurons it activates
downstream—by its “projective field.” Until recently, the output of a neu-
ron was much more difficult to determine than its inputs, but new genetic
and anatomical techniques make it possible to track the axonal projections
downstream with great precision, and new optogenetic techniques make
it possible to selective stimulate specific neurons to probe their impact on
perception and behavior.” Even so, our small network could only identify
the curvature of hills or bowls, and we still don’t know how globally orga-
nized perceptions, called “gestalts” in the psychology literature, are orga-
nized in the cortex.

Steve Zucker and I were once stranded at the old Stapleton International
Denver Airport in 1984, our flights delayed by a snowstorm. Excited about
computational neuroscience, which was still in its infancy, we dreamed up
a workshop that would bring together computational and experimental
researchers and decided to organize it at Woods Hole, where I had taken
a summer course in neurobiology and had returned for several summers
to work with Stephen Kuffler on physiological experiments at the Marine
Biological Laboratory. Woods Hole is a beautiful Cape Cod village on the
sea, not too far from Boston. Over the years, many of the leading research-
ers who study vision have come to this annual workshop, which has been
another scientific high point for me. What emerged from these workshops
was the beginning of a computational theory for the visual cortex, although
confirmation of that theory would take another thirty years. (In chapter 9,
we will see that the architecture of the most successful deep learning net-
work is remarkably similar to that of the visual cortex.)

Visual Maps in the Cortex Are Hierarchically Organized

Jon Kaas and John Allman, while at the Neurophysiology Department of
the University of Wisconsin in the early 1970s, explored the cortical areas
that received inputs from the primary visual cortex and discovered that dif-
ferent areas had different properties. For example, they discovered a map
of the visual field in an area they called the “middle temporal cortex” or
“MT,” whose neurons responded to oriented visual stimuli moving in a
preferred direction. Allman mentioned to me that they had a difficult time
getting the chairman of his department, Clinton Woolsey, to accept their
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discovery. In an earlier experiment, Woolsey’s coarser recording techniques
had missed the areas of extrastriate visual cortex that Kaas and Allman had
later discovered with better recording techniques.'* More recent studies
were to find some two dozen visual areas in the monkey visual cortex.

In 1991 while at Caltech, David Van Essen made a careful study of the
inputs and outputs of each visual area of the cortex and arranged them in a
hierarchical diagram (figure 5.11). Sometimes used simply to illustrate the
complexity of the cortex, his diagram resembles the subway map of a great
city, with boxes representing the stops and the lines joining them the high-
speed train routes. The visual input from the retinal ganglion cells (RGC)
projects to the primary visual cortex (V1) at the bottom of the diagram.
From there, the signals are transported up the hierarchy, each area special-
ized for a different aspect of vision, such as form perception. Near the top
of the hierarchy on the right side of the diagram, the receptive fields of
neurons in the anterior, central, and posterior areas of the inferotemporal
cortex (AIT, CIT, and PIT) cover the entire visual field and respond prefer-
entially to complex visual stimuli such as faces and other objects. Although
we don’t know how the neurons do this, we do know that the strengths of
the connections can be altered by experience, so that neurons can learn
how to respond to new objects. Van Essen has since moved to Washington
University in St. Louis, where he is a co-director of the Human Connectome
Project funded by the National Institutes of Health (NIH)." The goal of his
research team there is to use imaging techniques based on magnetic reso-
nance imaging (MRI)'® to work out a long-range map of connections in the
human cortex (figure 5.12).

The Birth of Cognitive Neuroscience

In 1988, I served on a committee for the McDonnell and Pew Foundations
that interviewed prominent cognitive scientists and neuroscientists to get
their recommendations on how to jumpstart a new field called “cognitive
neuroscience.”'” The committee traveled around the world to meet with
experts to get their advice on which scientific topics were the most prom-
ising and where to place new centers for cognitive neuroscience. We met
at the Harvard Faculty Club on a hot August afternoon to interview Jerry
Fodor, who is an expert on the language of thought and a champion of
the modular mind. He started by throwing down the gauntlet, “Cognitive
neuroscience is not a science and it never will be.” He gave the impression
that he had read all the neuroscience papers on vision and memory, and
they did not come up to his standards. But when he remarked that “the
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Figure 5.11

Hierarchy of visual areas in the monkey brain. Visual information from retinal gan-
glion cells (RGC) in the retina project to the lateral geniculate nucleus (LGN) of the
thalamus, whose relay cells project to the primary visual cortex (V1). The hierarchy
of cortical areas terminates in the hippocampus (HC). Nearly all of the 187 links in
the diagram are bidirectional, with feedforward connection from a lower area and
feedback connection from the higher area. From D. J. Felleman and D. C. Van Es-
sen, “Distributed Hierarchical Processing in Primate Visual Cortex,” Cerebral Cortex 1,
no. 1 (1991): 30, figure 4.
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Figure 5.12
Human connectome. Long-range fiber tracts in the white matter of the cerebral cor-

tex can be traced noninvasively with magnetic resonance imaging (MRI) based on
the uneven diffusion of water molecules. The false colors label the directions of dif-
ferent pathways. From The Human Connectome Project.

McDonald Foundation is throwing away its money,” John Bruer, the presi-
dent of the McDonnell Foundation, was quick to point out that Fodor was
confusing his foundation with the hamburger place down the road.

Unfazed, Fodor explained why the mind had to be thought of as a mod-
ular symbol-processing system running an intelligent computer program.
Patricia Churchland, a philosopher at the University of California, San
Diego, asked him whether his theory also applied to cats. “Yes,” said Fodor,
“cats are running the cat program.” But when Mortimer Mishkin, an NIH
neuroscientist studying vision and memory, asked him to tell us about dis-
coveries made in his own lab, Fodor mumbled something I couldn’t follow
about using event-related potentials in a language experiment. Mercifully,
at that moment, a fire drill was called and we all filed outside. Standing in
the courtyard, I overheard Mishkin say to Fodor: “Those are pretty small
potatoes.” When the drill was over, Fodor had disappeared.
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Cognitive neuroscience has grown into an important field that has
attracted researchers from many areas of science, including social psychol-
ogy and economics, which previously had little or no direct connection
with neuroscience. What made this possible was the introduction of nonin-
vasive methods for visualizing brain activity, in the early 1990s, especially
functional magnetic resonance imaging (fMRI), which now has a spatial
resolution of a few millimeters. The large fMRI data sets being generated are
analyzed with new computational methods such as Independent Compo-
nent Analysis (to be discussed in chapter 6).

Since the brain can’t work without oxygen, and blood flow is tightly
regulated at submillimeter levels, fMRI measures the blood oxygen level
dependent (BOLD) signal as a surrogate for brain activity. The degree of
oxygenation in the blood changes its magnetic properties, which can be
monitored noninvasively with fMRI and used to produce dynamic images
of brain activity with a time resolution of a few seconds, short enough to
keep track of which parts of the brain are engaged during an experiment.
Functional MRI has been used to explore the temporal integration time
scale in different parts of the visual hierarchy.

Uri Hasson at Princeton University performed an fMRI experiment
designed to probe which parts of the visual hierarchy are involved in proc-
essing movies of different lengths.'® A Charlie Chaplin silent film was cut
into segments, which were scrambled at time scales of 4, 12, and 36 seconds
and presented to subjects. At 4 seconds, subjects could recognize a scene; at
12 seconds, connected actions; and at 36 seconds, a story with beginning
and end. The fMRI responses in the primary visual cortex at the bottom
of the hierarchy were strong and reliable regardless of the time scale, but
at higher levels of the visual hierarchy, only the longer time scales evoked
a reliable response, and areas of prefrontal cortex at the top of the hierar-
chy required the longest time interval. This is consistent with other experi-
ments showing that working memory, our ability to hold onto information
like telephone numbers and elements of a task we are working on, is also
organized in a hierarchy, with the longest working memory time scales in
the prefrontal cortex.

One of the most exciting areas of research in neuroscience, the study
of learning in brains can be studied at many levels of investigation, from
molecules to behavior.
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Timeline

1949—Donald Hebb publishes The Organization of Behavior, which intro-
duced the Hebb rule for synaptic plasticity.

1982—John Hopfield publishes “Neural Networks and Physical Systems
with Emergent Collective Computational Abilities,” which introduced the
Hopfield net.

1985—Geoffrey Hinton and Terry Sejnowski publish “A Learning
Algorithm for Boltzmann Machines,” which was a counterexample to
Marvin Minsky and Seymour Papert’s widely accepted belief that no learning
algorithm for multilayer networks was possible.

1986—David Rumelhart and Geoffrey Hinton publish “Learning Internal
Representations by Error-Propagation,” which introduced the “backprop”
learning algorithm now used for deep learning.

1988—Richard Sutton publishes “Learning to Predict by the Methods of
Temporal Differences” in Machine Learning. Temporal difference learning
is now believed to be the algorithm implemented in all brains for reward
learning.

1995—Anthony Bell and Terrence Sejnowski publish “An Information-
Maximization Approach to Blind Separation and Blind Deconvolution,”
describing an unsupervised algorithm for Independent Component
Analysis.

2013—Geoffrey Hinton’s NIPS 2012 paper “ImageNet Classification with
Deep Convolutional Neural Networks” reduces the error rate for correctly
classifying objects in images by 18 percent.

2017—AlphaGo, a deep learning network program, beats Ke Jie, the world
champion at Go.






6 The Cocktail Party Problem

At a crowded cocktail party, it can be a challenge to hear the person in front
of you when the air is filled with a cacophony of others talking around you.
Having two ears helps direct your hearing in the right direction, and your
memory can fill in missing snatches of conversation. Now imagine a cock-
tail party with 100 people in a room and 100 nondirectional microphones
spread around, each picking up sounds from everyone but with different
ratios of amplitudes for each person on each microphone. Is it possible
to devise an algorithm that can separate each of the voices into separate
output channels? To make it even more difficult, what if the sound sources
were unknown—such as music, clapping, nature sounds, or even random
noise? This is called the “blind source separation problem” (figure 6.1).

At the 1986 Neural Networks for Computing, AIP Conference, a precur-
sor of the NIPS conferences, held on April 13-16 in Snowbird, Utah, there
was a poster entitled “Space or Time Adaptive Signal Processing by Neural
Network Models.” Its authors, Jeanny Herault and Christian Jutten, used a
learning algorithm to blindly separate mixtures of sine waves (which are
pure frequencies) presented to a neural network model; they pointed to a
new class of unsupervised learning algorithms."' Although it was not known
at the time if there was a general solution that could blindly separate other
types of signals, a decade later, Anthony Bell and I found an algorithm that
could solve the general problem.?

Independent Component Analysis

The perceptron is a one-neuron neural network. The next simplest network
architecture has more than one model neuron in the output layer; with
each input neuron connected to each output neuron, it transforms pat-
terns on the input layer into patterns on the output layer. This network
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Figure 6.1

Blind source separation. Kyle and Stan are talking at the same time in a room with
two microphones. Each microphone picks up signals from the speakers and reflec-
tions from the walls of the room. The challenge is to separate the two voices from
each other without knowing anything about the signals. Independent component
analysis (ICA) is a learning algorithm that solves this problem without knowing any-
thing about the sources.

can do more than just classify inputs. It can learn to perform blind source
separation.

An undergraduate working as a summer intern at ETH Zurich (the Swiss
Federal Institute of Technology in Zurich) in 1986, Tony Bell (figure 6.2)
was an early convert to neural nets and traveled down to the University of
Geneva to hear four talks by neural network pioneers. After completing his
doctorate at the University of Brussels, he moved to La Jolla in 1993 to join
my lab as a postdoctoral fellow.

The “general infomax learning principle” maximizes the information
flowing through a network.’ Tony was working on signal transmission in
dendrites, which are long thin cables that the brain’s neurons use to collect
information from thousands of synapses attached to the dendrites. He had
an intuition that it should be possible to maximize the information coming



The Cocktail Party Problem 83

Figure 6.2
Anthony Bell thinking independently around 1995 when he was working on inde-
pendent component analysis. Experts know many ways that fail to solve a problem,

but it is often someone who is looking at a problem for the first time who sees a new
approach and solves it. Tony and I discovered an iterative algorithm for solving the
blind source separation problem that is now in engineering textbooks and has thou-
sands of practical applications. Courtesy of Tony Bell.

down a dendrite by changing the densities of ion channels in the dendrite.
In simplifying the problem (ignoring the dendrites), Tony and I found a
new information-theoretic learning algorithm, which we called “indepen-
dent component analysis” (ICA), that solved the blind source separation
problem (box 6.1).*

Independent component analysis has since been used for thousands of
applications and is now in signal processing textbooks.® When applied to
patches from natural images of outdoor scenes, the ICA’s independent com-
ponents are localized, oriented edge filters (figure 6.3), similar to those of
the simple cells in the visual cortex of cats and monkeys (figure 5.4).° With
ICA, only a few of the many sources are needed to reconstruct a patch of an
image; such reconstructions are called mathematically “sparse.”’
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Box 6.1
How Independent Component Analysis Works

Comparison between principal component analysis (PCA) and indepen-
dent component analysis (ICA). The outputs from the two microphones in
figure 6.1 are plotted against each other on the vertical and horizontal axes
above. The coordinates of each dot are their values at a single time point.
PCA is a popular unsupervised learning technique that picks out a direction
that bisects the two signals, maximally mixing them, and the PCA axes are
always perpendicular to each other. ICA finds the axes that fall along the
directions of the dots, representing the separated signals, which may not be
perpendicular.

These results confirmed a conjecture made by Horace Barlow, a distin-
guished vision scientist, in the 1960s, when David Hubel and Torsten Wie-
sel discovered simple cells in the visual cortex. An image contains a great
deal of redundancy because nearby pixels often have similar values (such
as pixels in the sky). Barlow conjectured that, by reducing the redundancy
in the representation of natural scenes,® the simple cells were able to trans-
mit the information in the image more efficiently. It took fifty years to
develop the mathematical tools to confirm his intuition.

Tony and I also showed that when independent component analysis
is applied to natural sounds, the independent components are temporal
filters with different frequencies and durations, similar to the filters found
in the early stages of the auditory system.” This gave us confidence that
we were on the right track to understanding fundamental principles about
how the sensory signals were represented in the earliest stages of processing
in the visual cortex. By extending this principle to independent feature
subspaces of linear filters, it was possible to model complex cells in visual
cortex.'
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Independent component analysis filters derived from natural images. Small patches
(12x12 pixels) from images of natural scenes in the left panel were used as inputs to
an ICA network with 144 output units. The resulting independent components in
the right panel resemble the simple cells found in the primary visual cortex: They
are localized and oriented with positive regions (white) and negative regions (black),
where gray is zero. It only takes a few of the filters to represent any given patch, a
property called “sparsity.” Left: courtesy of Michael Lewicki; right: from Bell and
Sejnowski, “The ‘Independent Components’ of Natural Scenes Are Edge Filters,”
figure 4.

The ICA network has an equal number of input and output units and
a fully connected set of weights between them. To solve the blind source
separation problem, the sounds from the microphones are played through
the input layer, one input unit for every microphone, and the ICA learning
algorithm, like the perceptron algorithm, iteratively modifies the weights
to the output layer until they converge. But, unlike the perceptron, which
is a supervised learning algorithm, independent component analysis is an
unsupervised learning algorithm that uses a measure of the independence
between the output units as a cost function; it does not know what the
output target should be. As the weights are changed to make the outputs as
independent as possible, the original sound sources become perfectly sepa-
rated, or as “decorrelated” as possible if they are not independent. Unsu-
pervised learning can discover previously unknown statistical structure in
many different types of data sets.
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Independent Components in the Brain

Tony Bell’s infomax ICA algorithm set off a sequence of Aha!l moments, as
others in my lab began to apply it to different types of recordings from the
brain. Using The first electrical signals from the brain had been recorded
from the scalp by Hans Berger in 1924 and was called “electroencephalog-
raphy” (EEG). Neuroscientists have used these complex, oscillating signals
to eavesdrop on our ever-changing brain states, which vary with our alert-
ness and sensorimotor interactions. The electrical signal at an electrode on
the scalp receives inputs from many different sources within the cerebral
cortex as well as muscle and eye movement artifacts. Each scalp electrode
receives a mixture of signals from the same set of sources in the brain, but
with different amplitudes, which is formally the same as the cocktail party
problem.

Scott Makeig, who was a staff scientist in my lab at the Salk Institute
in the 1990s, used ICA to extract dozens of dipolar sources in the cortex
and their time courses from EEG recordings (figure 6.4). A dipole is one
of the simplest patterns a brain source can have, the simplest being a uni-
form pattern over the scalp, generated by a static point charge, and the sec-
ond simplest, the dipole pattern generated by current moving in a straight
line, which occurs in cortical pyramidal neurons. Think of the dipole as
an arrow. The surface of the scalp is positive in the direction of the arrow’s
head and negative in the direction of its tail; the pattern covers the entire
head, which is why it is so difficult to separate many brain sources that are
activated at the same time. Two sources extracted from EEG, IC2 and IC3,
are approximately dipolar sources in figure 6.4. Independent component
analysis also separates the artifacts, such as eye movements and electrode
noise, which could then be subtracted out with high accuracy (IC1 and IC
4 in figure 6.4). Many thousands of papers have since been published using
ICA to analyze EEG recordings, and important discoveries have been made
using ICA to analyze a wide range of brain states.

Martin McKeown, who was then a postdoctoral fellow in my lab with a
background in neurology, figured out how to flip space and time to apply
independent component analysis to functional magnetic resonance imag-
ing recordings (figure 6.5)."" Brain imaging with fMRI measures the level of
blood oxygenation, which is indirectly linked to neural activity, at tens of
thousands of locations within the brain. In figure 6.5, the ICA sources were
brain regions that had a common time course but were spatially indepen-
dent of the other sources. Sparsity in the spatial domain means that at any
given time, only a few regions are highly active.
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Figure 6.4

Independent component analysis applied to electroencephalographic (EEG) record-
ings from the scalp. Scalp maps seen from above (nose pointing up) with electrodes
located at the black dots and color maps of the voltages in microvolts (uV) at one
time point. The fluctuating EEG signals shown from five scalp channels shown in the
left panel are contaminated with artifacts from eye blinks and muscle signals. ICA
separates the brain components from artifacts, as shown in the right panel (where
“IC” stands for “independent component”). IC1 is an eye blink based on the slow
time course and the scalp map, which has highest values (red) over the eyes. IC4 is a
muscle artifact based on the high frequency high amplitude noise and the localized
source on the scalp map. IC2 and IC3 are brain sources, indicated by the dipolar pat-
tern on the scalp (positive red region opposed to negative blue region) compared to
the more complex pattern on scalp from the EEG recordings as shown on the scalp
map in the left panel. Courtesy of Tzyy-Ping Jung.
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Independent component analysis applied to functional magnetic resonance imaging
(fMRI) data. A component consists of a brain activity map and a time course. This
illustrates several type of components. The task presents a visual stimulus for 5 sec-
onds, which is picked up by task-related components. The time courses of the signals
in the boxes is around one minute and the task is repeated four times, as in panel
(a). Other components pick up artifacts such as head motions. From M. J. McKeown,
T.-P. Jung, S. Makeig, G. D. Brown, S. S. Kindermann, T.-W. Lee, and T. J. Sejnowski,
“Spatially Independent Activity Patterns in Functional MRI Data during the Stroop
Color-Naming Task,” Proceedings of the National Academy of Sciences of the United States
of America 95, no. 3 (1998): 806, figure 1.
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Because independent component analysis is unsupervised, it can reveal
networks of brain areas that work together, which goes beyond supervised
techniques that try to relate the activity in an area to a sensory stimulus or
motor response. For example, ICA has been used to uncover multiple rest-
ing states in fMRI recordings from subjects who are simply asked to stay still
in the scanner and rest.'* We still do not yet understand what these resting
states mean, but they could represent combinations of brain areas that are
responsible for what happens in our brains when we daydream, have a nag-
ging concern in the back of our mind, or are planning dinner.

The principle of maximum independence is related to principles of
sparse coding. Although ICA uncovers many independent components,
only a few of them were needed to reconstruct a given patch from a natural
image. This principle also applies to the visual cortex, which has one hun-
dred times more cells than the inputs coming from a retina. Each of our ret-
inas has 1 million ganglion cells, and there are 100 million neurons in the
primary visual cortex, the first of many layers in the visual hierarchy in the
cortex. The compact coding of visual signals in the retinas gets expanded
in the cortex to a new code that is highly distributed and highly sparse.
The expansion into a space of much higher dimensionality is exploited in
other coding schemes, including those found in auditory cortex and olfac-
tory cortex, and a new class of algorithms called “compressed sensing algo-
rithms” has generalized the principle of sparsity to improve the efficiency
of storing and analyzing complex data sets."

Beyond Independent Component Analysis

The story of ICA illustrates the importance of techniques in making new
discoveries in science and engineering. We normally think of techniques as
measuring devices like microscopes and amplifiers. But algorithms are also
techniques, and they can allow new discoveries to be made with data from
old instruments. EEG recordings have been around for nearly 100 years, but
without independent component analysis, it wasn’t possible to pin down
the underlying brain sources. The brain itself is a system of interlocking
algorithms, and I would not be surprised if in some part of the brain nature
discovered a way to implement ICA."

During the 1990s, many other advances were made in developing new
learning algorithms for neural networks, many of which, like ICA, are now
part of the mathematical toolbox in machine learning. These algorithms are
embedded in many commonly used appliances, none of which say “neural
networks inside.” Take headsets or cell phones, for example. Te-Won Lee
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and Tzyy-Ping Jung, two former postdoctoral fellows in my lab who went
on to start a company called “SoftMax,” used ICA with two microphones
in a Bluetooth headset to cancel background noise, making it possible for a
listener to hear someone talking at a noisy restaurant or sporting event. In
2007, SoftMax was bought by Qualcomm, which designs the chips that are
used in many cell phones and today ICA-like solutions are embedded in a
billion cell phones. If you had a penny for every cell phone running ICA,
you’d be a multimillionaire today.

Tony Bell has for many years been interested in an even more difficult
problem. As human beings, we have many networks within us in which
information emerges from one network level to another, from molecules, to
synapses, to neurons, to neural populations, and on up to form decisions,
all explained by the laws of physics and biochemistry (figure 4.4). But we
have the impression that we, not physics or biochemistry, are in control.
It is a mystery how internal activity emerging in neural populations in our
brains leads us to make decisions, to read this book, for example, or to
play tennis. Made well below the level of our consciousness, these decisions
somehow bubble up from neurons interacting through synapses formed by
experiences based on molecular mechanisms. But from our human perspec-
tive, it was our decisions that caused all these events to occur in our brains:
introspectively, causality seems to be running in the opposite direction
from physics and biochemistry. How to reconcile these two perspectives is
a deep scientific question."



7 The Hopfield Net and Boltzmann Machine

Computer scientist Jerome Feldman was at the University of Rochester
when he embraced a connectionist network approach to artificial intelli-
gence in the 1980s. Ever the truth teller, Jerry pointed out that the algo-
rithms being used in Al took billions of steps to reach an often incorrect
conclusion, whereas the brain could reach a usually correct conclusion in
around 100 steps.' Feldman’s “100-step rule” was not popular among Al
researchers at the time, but a few, most notably Allen Newell at Carnegie
Mellon, did use it as a constraint.

Jerry once rescued me when I got stranded at the airport in Rochester,
New York. I was on my way back to Baltimore from a visit to the General
Electric Research Laboratory in Schenectady when the pilot started telling
us about the weather in Rochester. I'd gotten on the wrong plane. After
we landed and I booked the earliest flight to Baltimore, which didn’t leave
until the next day, I bumped into Jerry, who was returning home from a
committee meeting in Washington, D.C. He graciously invited me to stay
with him that night. Jerry has since moved on to UC, Berkeley, but I think
of him whenever I'm stranded at an airport.

Jerry distinguished between “scruffy” and “neat” connectionist models.
Scruffy models, like the ones that Geoffrey Hinton and I worked on, distrib-
uted the representation of objects and concepts across many units in the
network, whereas neat models, like the ones Jerry believed in, provided a
computationally compact representation of objects and concepts, with one
label on one unit. In a broader context, scruffy science uses approximations
to get qualitative answers, whereas neat science strives to pin down exact
solutions to problems. In reality, both are needed to make progress.” I had
no problem with getting a scruffy toehold, but made every effort to reach
a neater explanation, and eventually it paid off: Geoffrey and I were about
to hit the “neat” jackpot.
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John Hopfield

To receive a doctorate in physics, you have to solve a problem. A good
physicist should be able to solve any problem, but a great physicist
knows what problem to solve. John Hopfield is a great physicist. After a
distinguished career in condensed matter physics, he turned his interest
to biology and, in particular, to the problem of “molecular proofread-
ing.” When DNA is replicated during cell division, errors are inevitable,
and these must be corrected to preserve the fidelity of the daughter cells.
John figured out a clever scheme for how that could be done, and, even
though the process he proposed consumes energy, subsequent experiments
showed he was right. Getting anything right in biology is a spectacular
achievement.

John was my doctoral advisor at Princeton when he was just getting
interested in neuroscience. With growing enthusiasm, he would tell me
what he had learned from the neuroscientists who spoke at meetings of the
Neuroscience Research Program (NRP), based in Boston. I found the pro-
ceedings of small workshops published by the NRP invaluable since they
gave me a sense of what problems were being studied and the thinking
in the field at the time. I still have my copy of the proceedings of a work-
shop on neural coding that was organized by the legendary neuroethologist
Theodore Holmes Bullock, who would one day become a colleague of mine
at UC, San Diego. Ted’s book with Adrian Horridge on invertebrate nervous
systems is a classic.’ I collaborated with Ted on modeling the collective
behavior of coral reefs and was proud to be a coauthor on his last scientific
paper in 2008.*

Neural networks with feedback connections to earlier layers and recur-
rent connections between units within a layer can have much more com-
plex dynamics than networks that only have feedforward connections.
The general case of networks with arbitrarily connected units with positive
(excitatory) and negative (inhibitory) weights poses a difficult mathemati-
cal problem. Although Jack Cowan at the University of Chicago and Ste-
phen Grossberg at Boston University had made progress in the late 1970s
by showing that such networks could reproduce visual illusions® and visual
hallucinations,® engineers found it hard to get the networks to solve com-
plex computational problems.

A Network with Content-Addressable Memories

In the summer of 1983, Geoffrey Hinton, John Hopfield (figure 7.1), and
I were at a workshop at the University of Rochester organized by Jerry
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Figure 7.1

John Hopfield solving a problem on the waterfront at Woods Hole, Massachusetts
around 1986. Hopfield had a seminal influence on neural networks in the 1980s by
inventing an eponymous network that opened the door to deep learning. Courtesy
of John Hopfield.

Feldman. Hopfield told us that he had solved the convergence problem
for a strongly interacting network. He had proved that a particular type of
nonlinear network model, now called the “Hopfield net,” was guaranteed
to converge to a stable state, called an “attractor” (figure 7.2; box 7.1).
(Highly nonlinear networks are prone to oscillate or exhibit even more cha-
otic behavior.) Furthermore, the weights in the network could be chosen
so that the attractors were memories. The Hopfield net could thus be used
to implement what is called a “content-addressable memory,” whereby a
stored memory could be retrieved by starting with part of the memory and
letting the network complete it. This is reminiscent of how we recall memo-
ries. If we see the face of someone we know, we can recall the person’s name
and conversations we’ve had with that person.

What made the Hopfield net a major breakthrough was that it was
mathematically guaranteed to converge. Researchers had thought it would
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Figure 7.2

Energy landscape of a Hopfield net. (Left) The state of the network can be visualized
as a point on an energy surface. (Right) Each update moves the state closer to one
of the energy minima, called “attractor states.” From A. Krogh, J. Hertz, and R. G.
Palmer, Introduction to the Theory of Neural Computation (Redwood City CA: Addison-
Wesley, 1991). Left: figure 2.6; Right: figure 2.2.

be impossible to analyze the general case of a highly nonlinear network.
When updates are made simultaneously for all the units in such a network,
the dynamics can be extremely complicated, and there is no guarantee of
convergence.® But Hopfield showed that, when the units of the network
are updated sequentially, the special case of a symmetric network in which
reciprocal connections between pairs of units are equal in strength is trac-
table and does indeed converge.

There is increasing evidence that neural networks in the hippocampus
(essential for storing long-term memories of specific events and unique
objects) have attractor states like those in a Hopfield net.” Although the
Hopfield model is highly abstracted, its qualitative behavior is similar to
what is observed in the hippocampus. Hopfield nets were a bridge from
physics to neuroscience that many physicists crossed in the 1980s. Sur-
prising insights were obtained by analyzing neural networks and learning
algorithms with sophisticated tools from theoretical physics. Physics, com-
putation, and learning are profoundly linked in an area of neuroscience
theory that has been successful at illuminating brain function.

John Hopfield and David Tank, who was then at Bell Laboratories, went
on to show that a variant of the Hopfield net, in which the units were
continuously valued between zero and one, could be used to obtain good
solutions for optimization problems such as the “traveling salesman prob-
lem,” where the goal is to find the shortest route that visits many cities
only once." This is a notoriously difficult problem in computer science.
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Box 7.1
The Hopfield Net
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In a Hopfield net, each unit sends an output wire to all the other units in the
network. The inputs are x; and the outputs are y;. The strengths of the con-
nections or weights between the units are symmetric: w; = w;. On each time
step, one of the units is updated by summing up inputs and comparing that
to a threshold: If the inputs exceed the threshold, the output of the unit is 1;
otherwise 0. Hopfield showed that the network has an energy function that
never increases with each update of a unit in the network:

E:ZW,‘,‘X,‘X,‘

Eventually, the Hopfield net arrives at an “attractor state,” when none of
the units changes and the energy function is at a local minimum. This state
corresponds to a stored memory, which can be recovered by initializing the
network with a part of the stored state. This is how the Hopfield net imple-
ments a content-addressable memory. The weights of the stored vectors can
be learned by Hebbian synaptic plasticity:

AW;‘,‘ = O X Xj,

where the left side is the change in the strength of the weight, o is the learning
rate, and x; is a stored vector.
Drawing courtesy of Dale Heath.
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The energy function for the networks included the lengths of the paths and
constraints on visiting each city once. After an initial transient, Hopfield
and Tank’s network would settle down to a state of minimum energy that
represented a good tour, though not always the best tour.

Finding the Global Energy Minimum

Dana Ballard, who with Christopher Brown had written a classic book on
computer vision in 1982," was also at the 1983 workshop. Geoffrey Hinton
and I were working with Dana on a review of a new approach to analyzing
images for Nature."” The idea was that the nodes in a network model rep-
resented features in the image and the connections in the network imple-
mented constraints between the features; compatible nodes had positive
interactions and inconsistent nodes had negative interactions with one
another. In vision, a consistent interpretation of all the features must be
found that satisfies all the constraints.

Could the Hopfield net solve this constraint satisfaction problem? The
energy function was a measure of how well the network satisfied all the
constraints (See box 7.1). The vision problem required a solution that was
the global energy minimum, the best solution, whereas the Hopfield net, by
design, found only local minima of the energy. I had recently come across
a paper in the journal Science by Scott Kirkpatrick, then at IBM’s Thomas
J. Watson Research Center in Yorktown Heights, New York, that I thought
could help." Kirkpatrick used a method called “simulated annealing” to get
around local minima. Suppose you had a bunch of components in an elec-
trical circuit that had to be mounted onto two circuit boards. What would
be the best placement of the parts to minimize the number of wires needed
to connect them?

Poor solutions are found by initially randomizing the placement of the
parts, then moving them back and forth one at a time to see which place-
ment had fewest wires because the network can easily get trapped in a local
minimum when there is no improvement by moving any single compo-
nent. The way to escape the local minimum is to allow random jumps to
a configuration with longer wire lengths. The probability of jumping out,
though high at the beginning, gradually decreases so that, by the end, it is
zero. If the decrease in probability is slow enough, the final placement of
the parts will have a global minimum of connecting wires. In metallurgy,
this process is called “annealing”; heating up a metal and slowly cooling
it produces large crystals with minimal defects, which are what make the
metal brittle and prone to cracks.
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Boltzmann Machines

In a Hopfield net, simulated annealing corresponds to “heating up” the
updates so that the energy can go uphill as well as downhill. Because the
units flip randomly at a high temperature, if the temperature is gradually
lowered, there is a high probability that the Hopfield net will end up frozen
in the lowest energy state when the temperature reaches zero. In practice,
simulations start out at a constant temperature to allow the network to
come to equilibrium, where it can visit many nearby states and explore a
wide range of possible solutions.

For example, in figure 7.3, the silhouetted figure is ambiguous and,
depending on what part you pay attention to, you will either see a vase
or two faces, but never both at the same time. Consider the problem of
deciding what part of the image is the figure and what is the background
(called the “ground”). We designed a Boltzmann machine network that
mimics this figure-ground decision,'* with some units that represent the
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Ambiguous figure-ground problem. (Left) When you focus your attention on the

Figure 7.3

black figure, you see a vase and the white is ground. But when you focus on the white
areas, you can see two faces looking at each other. You can flip back and forth but
you cannot see both interpretations at the same time. (Right) Figure-ground network
model. Two types of units representing the edges of an object (line segments) and
whether a pixel is part of the figure or part of the ground (squares). Image inputs are
bottom up, and attention input is top down. Attention is implemented as a bias to
the region that should be filled in as the figure. From P. K. Kienker, T. J. Sejnowski,
G. E. Hinton, and L. E. Schumacher, “Separating Figure from Ground with a Parallel
Network,” Perception 15 (1986): 197-216. Left: figure 1; right: figure 2.
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Box 7.2
The Boltzmann Machine
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All connections in a Boltzmann machine are symmetric, as they are in the
Hopfield net, and the binary units are updated one a time by setting s; = 1
with a probability given by the above sigmoid function, where the inputs AE
are scaled by temperature 7. The input layer and the output layer are “vis-
ible,” in the sense that they interact with the outside world. The “hidden units”
represent features having internal degrees of freedom that can affect the vis-
ible units. The Boltzmann machine learning algorithm has two phases: in the
“wake” phase, the inputs and outputs are clamped and after the network comes
to equilibrium the average correlation between pairs of units is computed;
in the “sleep” phase, the correlations are again computed with the inputs and
outputs unclamped. Then the weights are incrementally updated:

_ wake sleep
Aw; = £(<s,.s/.> — <85> )
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figure when they are activated and others that represent the edges. We have
already seen that there are simple cells in the visual cortex that are activated
by edges, but the figure could lie on either side of an edge. This was imple-
mented in our Boltzmann machine network by having two edge units, each
supporting the figure on either side. Such neurons were subsequently dis-
covered in the visual cortex and are called “border-ownerships cells.”"®

The weights in the Boltzmann network were handcrafted to implement
the constraints (figure 7.4). There are excitatory connections between the
figure units and inhibitory connections between the edge units. The edge
units have excitatory connections with the figure units they point to, sup-
porting the figure, and inhibitory connections with the figure units in the
opposite direction. Attention was implemented by a bias to some of the
figure units. When the Boltzmann network uses the Hopfield update rule
for the units, it falls into local energy minima that are consistent in local
patches but inconsistent globally. When noise was added to the updates,
the Boltzmann network jumped out of the local minima, and, by slowly
annealing the temperature of the noise, the network relaxed to a globally
consistent solution at the global energy minimum (figure 7.4). Because the
updates are asynchronous and independent, the network can be imple-
mented by a computer with millions of units working together in parallel
and can converge to solutions much faster than a digital computer that
performs one operation at a time, in sequence.

I had by this time finished my postdoctoral fellowship at Harvard
Medical School with Stephen Kuffler and moved to my first job in the
Department of Biophysics at Johns Hopkins; Geoffrey Hinton had taken a
faculty position in the Computer Science Department at Carnegie Mellon,
where he was fortunate to have the support of Allen Newell, who was open
to new directions in artificial intelligence. Pittsburgh and Baltimore are
close enough so that Geoffrey and I could visit each other on weekends. We
called our new version of the Hopfield net the “Boltzmann machine” after
Ludwig Boltzmann, the nineteenth-century physicist who was a founder of
statistical mechanics, the source of the tools that we were using to analyze
our fluctuating neural network model, which, we were about to discover,
was also a powerful learning machine.

Kept at a constant “temperature,” a Boltzmann machine will come to
equilibrium. Something magical happens at equilibrium that would open
a door that everyone thought was closed for good: multilayer neural net-
work learning. One day, Geoffrey called to say he had just derived a simple
learning algorithm for the Boltzmann machine. The goal of the algorithm
was to perform a mapping from input units to output units, but, unlike the
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Figure 7.4

Separating figure from ground with a Boltzmann machine. (Above) The square units
in the network identify the figure and the triangular edge units identify the outline,
with the signs of the connections indicated. Edge units can point toward or away
from the figure. (Below) (a) Snapshot of a network with attention on the inside of the
“C.” The temperature starts out high so that the units are fluctuating between on and
off. (b) As the temperature drops, units on the inside of the “C” begin to coalesce,
with support from the boundary units that point to the inside. Units on the outside
that do not have attention or edge input disappear as the temperature is decreased.
(c) The figure is filled in when attending the inside when the temperature reaches
zero. (d) The outside is filled in when the process is repeated while attending the
outside. From P. K. Kienker, T. J. Sejnowski, G. E. Hinton, and L. E. Schumacher,
“Separating Figure from Ground with a Parallel Network,” Perception 15 (1986): 197-
216, Below: figure 6; above: figure 3.



The Hopfield Net and Boltzmann Machine 101

perceptron, the Boltzmann machine also had units in between, which we
called “hidden units” (box 7.2). By presenting input-output pairs and apply-
ing the learning algorithm, the Boltzmann network learned the desired
mapping. But the goal was not just to memorize the pairs; it was also to
correctly categorize new inputs that were not used to train the network.
Also, because it is always fluctuating, the Boltzmann machine is learning
the probability distribution—how often each output state is visited for a
given input pattern—which makes it generative: after learning, it can gen-
erate new input samples by clamping each output category.

Hebbian Synaptic Plasticity

The surprise was that the Boltzmann machine learning algorithm turned
out to have a long history in neuroscience, going back to the psychologist
Donald O. Hebb, who in his book The Organization of Behavior postulated
that when two neurons fired together, the synapse between them should
strengthen:

Let us assume that the persistence or repetition of a reverberatory activity (or
“trace”) tends to induce lasting cellular changes that add to its stability. When
an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, is increased.'®

This may be the most famous prediction in all of neuroscience. Heb-
bian synaptic plasticity was later discovered in the hippocampus, an impor-
tant brain area for long-term memory. When a hippocampal pyramidal
cell receives a strong input at the same time the neuron is spiking, the
strength of the synapse is increased. Subsequent experiments showed that
the strengthening was based on the conjunction of transmitter release from
the synapse and elevation of the voltage in the recipient neuron. More-
over, this conjunctive occurrence was recognized by a special receptor, the
NMDA (N-methyl-p-aspartate) glutamate receptor that triggers long-term
potentiation (LTP), which is rapid in onset and long lasting, a good can-
didate for the substrate of long-term memory. Hebbian plasticity at a syn-
apse is governed by coincidences between inputs and outputs, just like the
Boltzmann machine learning algorithm (see box 7.2).

Even more amazing, the Boltzmann machine had to go to sleep to be
able to learn. Its learning algorithm had two phases. In the first or “wake”
phase, with the input and output patterns were clamped to the desired map-
ping, the units in the network were updated many times to settle down to
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an equilibrium, and the fraction of time each pair of units were on together
was counted. In the second or “sleep” phase, the input and output units
were set free, and the fraction of time each pair of units were on together
was counted in a free running condition. Each connection strength was
then updated in proportion to the difference between the coincidence rates
in the wake and sleep phases (box 7.2). The computational reason for the
sleep phase is to determine which part of the clamped correlations was
due to external causes. Without subtracting the internally generated cor-
relations, the network would strengthen the internal patterns of activity
and would learn to ignore outside influences, a network version of folie
a deux. Interestingly, extreme sleep deprivation in humans leads to delu-
sional states, a common problem in intensive care units in hospitals that
have no windows and constant lighting. Patients with schizophrenia often
have sleep disorders that can contribute to their delusional ideation. We
were convinced that we were on the right track to understanding how the
brain worked.

Learning Mirror Symmetries

A problem the Boltzmann machine could solve but a perceptron could
not is how to learn mirror symmetries.”” The human body is bilaterally
symmetric along a vertical axis. We can generate a large number of ran-
dom patterns with this axis of symmetry, as shown in figure 7.5, and also
with horizontal and diagonal axes of symmetry. In our Boltzmann machine
network, 10x10 blocks of binary inputs projected to sixteen hidden units,
which in turn projected to three output units, one for each of the three
possible axes of symmetry. The Boltzmann machine was 90 percent success-
ful at classifying the axis of symmetry of novel inputs after being trained
on 6,000 symmetric input patterns. A perceptron can do no better than
chance because a single input carries no information about the symmetry
of the pattern; the correlations between pairs of inputs must be interro-
gated. What is remarkable is that the array of inputs a human observer sees
is not what the Boltzmann machine sees since each hidden unit receives
inputs from the whole array in no particular order. The equivalent problem
for an observer would be to randomize the locations of the input units in
the array, which would make the array look random to the observer even
though there is a hidden symmetry.

One day, I was watching the display and calling the symmetry of each
input pattern at a rate of two per second. Neal Cohen, then a colleague
in the Psychology Department at Johns Hopkins, was also watching the
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Figure 7.5

Symmetric random patterns. Each 10x10 array has a vertical, horizontal, or diagonal
axis of mirror symmetry. The goal of the network model is to learn how to classify
the axis of the symmetry in new patterns not used to train the network model. From
T. J. Sejnowski, P. K. Kienker, and G. E. Hinton, “Learning Symmetry Groups with
Hidden Units: Beyond the Perceptron,” Physica 22D (1986): 260-275, figure 4.
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display but could not categorize the symmetries without scrutinizing the
patterns and was amazed that I could. Watching the display for days as
the Boltzmann machine learned had trained my visual system to detect the
symmetry automatically, without having to look around the display. Neal
and I designed an experiment with undergraduates as naive subjects and
followed their progress.'® At the beginning, it took them many seconds to
get the right symmetry, but after a few days of training, they were much
faster, and by the end of the experiment, they could detect the symmetries
so quickly and effortlessly they could talk with us during the task and still
get all of them right. This was remarkably fast perceptual learning.

I taught “The Biophysics of Computation” at Johns Hopkins, a course
that attracted several talented students and researchers. Ben Yuhas was a
graduate student in the Department of Electrical Engineering who worked
with me and for his doctoral dissertation, he trained a neural network to
read lips.'® There is information on the sound of a voice in the movement
of a person’s mouth. Ben’s network transformed images of mouths into the
corresponding frequency spectrum of the sound being generated at each
time step. This could then be added to the noisy sound spectrum to improve
speech recognition. His fellow graduate student Andreas Andreou, a Greek
Cypriot with a booming voice, was building analog VLSI (very large-scale
integration) chips in the basement of Barton Hall. (These chips are featured
in chapter 14.) In the 1980s, there was hostility from faculty in their depart-
ment toward neural networks, which was common at many institutions,
but this did not deter either Ben or Andreas. Indeed, Andreas would go on
to become a full professor at Hopkins and to cofound the Johns Hopkins
University Center for Language and Speech Processing. Ben has a consult-
ing group on data science for political and corporate clients.

Learning to Recognize Handwritten Zip Codes

More recently, Geoffrey Hinton and his students at the University of
Toronto trained a Boltzmann machine with three layers of hidden units
to classify handwritten zip codes with high accuracy (figure 7.6).%° Because
the Boltzmann network had feedback as well as feedforward connections,
it was possible to run the network in reverse, clamping one of the output
units and generating input patterns that corresponded to the clamped out-
put unit (figure 7.7). Generative networks capture the statistical structure
of the training set and the samples they generate inherit these properties.
It is as if these networks go to sleep and activity at the highest level of the
networks generates sequences of dreamlike states on the input layer.
Although the rise of neural networks in physics and engineering was
swift, traditional cognitive scientists were slow to accept it as a formalism
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Figure 7.6

Multilayer Boltzmann machine for handwritten digit recognition and generation.
The image has 28 x 28 = 784 pixels, which can be white or black. The goal is to
classify the digit based on the ten output units (0-9). From G. E. Hinton, “Learning
Multiple Layers of Representation.” Trends in Cognitive Sciences 11 (2007): 428-434,
figure 1.
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Figure 7.7

Input layer patterns generated by a multilayer Boltzmann machine trained to recog-
nize handwritten digits. Each line was generated by clamping one of the ten output
units (figure 7.6), and the input layer continuously morphed between the examples
shown above. None of these digits were in the training set—they were “hallucinated”
by the internal structure of the trained network. From G. E. Hinton, S. Osindero,
and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18
(2006): 1527-1554 figure 8.
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to understand memory and language processing. Except for the Parallel
Distributed Processing (PDP) Group in La Jolla and a few isolated outposts,
symbol processing was still the only game in town. At a 1983 Cognitive
Science Society symposium that Geoffrey and I attended, Zenon Pylyshyn,
a psychologist who studies short-term memory and imagery, showed his
disdain for the Boltzmann machine by pouring a glass of water on the
stage and shouting, “This is not computation!” Others dismissed the whole
enterprise as mere “statistics.” But not Jerome Lettvin, who told us that
he really liked what we were doing. Lettvin had written the classic 1959
paper “What the Frog's Eye Tells the Frog’s Brain” with Humberto Mat-
urana, Warren McCulloch, and Walter Pitts,*" which reported evidence for
bug detector neurons in the frog retina that responded best to small dark
spots, an idea that was highly influential in systems neuroscience. His sup-
port for our fledgling neural network model was an important link to an
earlier era.

Unsupervised Learning and Cortical Development

The Boltzmann machine can be used either in its supervised version, where
both inputs and outputs are clamped, or in its unsupervised version, where
only the inputs are clamped. Geoffrey Hinton used the unsupervised ver-
sion to build up a deep Boltzmann machine one layer at a time.*” Starting
with a layer of hidden units connected to the input units, called a restricted
Boltzmann machine, Geoffrey trained these on unlabeled data, which are
a lot easier to come by than labeled data (there are billions of unlabeled
images and audio recordings on the Internet), and learning is much faster.
The first step in unsupervised learning is to extract from the data statisti-
cal regularities that are common to all the data, but the first layer of hid-
den units can only extract simple features, features that a perceptron can
represent. The next step is to freeze the weights to the first layer and add a
second layer of units on top. More unsupervised Boltzmann learning leads
to a more complex set of features, and this process can be repeated to create
a network that is many layers deep.

Because the units in the upper layers incorporate more nonlinear combi-
nations of low-level features, making it possible for them as a population to
abstract what is general from what is specific, classification becomes much
easier in the upper layers, requiring many fewer training examples to reach
convergence at a higher level of performance. Although it is still an open
problem to describe the mathematics of this disentangling, new geometri-
cal tools are being brought to bear on these deep networks.”
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The cortex also seems to develop layer by layer. At early stages in the
development of the visual system, neurons in the primary visual cortex,
the first to receive inputs from the eyes, are highly plastic and can easily be
rewired by the stream of visual input, which ends when the critical period
does. (This was described in chapter 5.) The hierarchy of visual areas and
other sensory streams in the back of the brain mature first; cortical areas
closer to the front of the brain take much longer. The prefrontal cortex,
the part that is furthest forward, may not reach full maturity until early
adulthood. Thus there is a gradual wave of development with overlapping
critical periods when the connections in a cortical area are the most influ-
enced by neural activity. Working with other colleagues, cognitive scientists
Jeffrey Elman and Elizabeth Bates at UC, San Diego developed connection-
ist network explanations for how the progressive development of the cor-
tex could account for the new abilities that emerge as a child learns more
about the world.* This opened a new research direction into how our long
childhood has made it possible for humans to become champion learners,
and it put previous claims for the innateness of some behaviors into a new
perspective.

In Liars, Lovers and Heroes,”® which I coauthored with Steven Quartz, a
former postdoctoral fellow in my lab who is now on the faculty at Caltech,
we wrote that, during the extended period of brain development in child-
hood and adolescence, experience can profoundly influence the expression
of genes in neurons, and thereby alter the neural circuits that are respon-
sible for behavior. The interplay between genetic differences and environ-
mental influences is an active area of research that is shedding new light
on the complexity of brain development, an area that goes beyond the
nature versus nurture debate and reframes it in terms of cultural biology.
Our biology both produces human culture and, in turn, is molded by it.** A
new chapter in this story was opened by a recent discovery: when there is
a rapid increase in the formation of synapses between neurons during early
development, the DNA inside neurons is modified epigenetically after birth
by a form of methylation that regulates gene expression and is unique to
the brain.” This epigenetic modification could be the link between genes
and experience that Steve Quartz and I had envisioned.

By the 1990s, the neural network revolution was well under way. Cogni-
tive neuroscience was expanding, and computers were getting faster—but
not fast enough. The Boltzmann machine was technically sweet but terribly
slow to simulate. What really helped us make progress was a faster learning
algorithm, which fell out of the sky just when we most needed it.
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The University of California, San Diego, founded in 1960, has grown into a
major center for biomedical research. It inaugurated a Department of Cog-
nitive Science in 1986, the first of its kind in the world.' David Rumelhart
(figure 8.1) was already a distinguished mathematical and cognitive psy-
chologist who had worked within the symbolic, rule-based tradition that
was dominant in artificial intelligence research during the 1970s. When
I first met David in 1979 at the workshop organized by Geoffrey Hinton
at UC, San Diego, he was pioneering a new approach to human psychol-
ogy that he and James McClelland called “parallel distributed processing”
(PDP). David thought deeply about problems and often made insightful
comments.

The Boltzmann machine learning algorithm could provably learn how
to solve problems that required hidden units, showing that, contrary to the
opinion of Marvin Minsky and Seymour Papert and most everyone else in
the field, it was possible to train a multilayer network and overcome the
limitations of the perceptron. There was no limit either to the number of
layers in a network or to the connectivity within any given layer. But there
was one problem: coming to equilibrium and collecting statistics became
increasingly slow to simulate, and larger networks took much longer to
reach equilibrium.

In principle, it is possible to build a computer with a massively parallel
architecture that is much faster than one with a traditional von Neumann
architecture that makes one update at a time. Digital computers in the
1980s could perform only a million operations per second. Today’s com-
puters perform billions of operations per second, and, by linking together
many thousands of cores, high-performance computers are a million times
faster than before—an unprecedented increase in technological power.

The Manhattan Project was a $26 billion dollar bet, in 2016 dollars,
made by the United States without any assurance that the atomic bomb
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Figure 8.1

David Rumelhart at the University of California, San Diego, around the time the
two volumes of Parallel Distributed Processing were published in 1986. Rumelhart was
influential in the technical development of learning algorithms for multilayer net-
works models and used them to help us understand the psychology of language and
thinking. Courtesy of David Rumelhart.

would work, and the biggest secret was that it did work. Once the secret
that multilayer networks could be trained using a Boltzmann machine
was out, there was an explosion of new learning algorithms. At the same
time that Geoffrey Hinton and I were working on the Boltzmann machine,
David Rumelhart had developed another learning algorithm for multilayer
networks that proved to be even more productive.?

Optimization

Optimization is a key mathematical concept in machine learning: for many
problems, a cost function can be found for which the solution is the state
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Box 8.1
Error Backpropagation

Input Hidden Qutput
layer layer layer

Error backpropagation

Input 1

Inputs to the backprop network are propagated feedforward: In the diagram
above, the inputs on the left propagate forward through the connections
(arrows) to the hidden layer of units, which in turn project to the output
layer. The output is compared with the value given by a trainer, and the differ-
ence is used to update the weights to the output unit to reduce the error. The
weights between the input units and the hidden layer are then updated based
on backpropagating the error according to how much each weight contributes
to the error. By training on many examples, the hidden units develop selective
features that can be used to distinguish between different input patterns so
that they can be separated into different categories in the output layer. This is
called “representation learning.”

Courtesy of Dr. Mahmoud.
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of the system with the lowest cost. In the case of the Hopfield net, the cost
function is the energy, and the goal is to find a state of the network that
minimizes it (as described in chapter 6). For a feedforward network, a popu-
lar cost function for learning is the summed squared error on the output
layer of the training set. “Gradient descent” is a general procedure that
minimizes a cost function by making incremental changes to the weights
in the networks in the direction of greatest reduction to the cost.’ Think of
the cost function as a mountain range and gradient descent as the path you
take to ski the fastest way down a slope.

Rumelhart discovered how to calculate the gradient for each weight in
the network by a process called the “backpropagation of errors,” or “back-
prop” for short (box 8.1). Starting on the output layer, where the error is
known, it is easy to calculate the gradient on the input weights to the out-
put units. The next step is to use the output layer gradients to calculate the
gradients on the previous layer of weights, and so on, layer by layer, all the
way back to the input layer. This is a highly efficient way to compute error
gradients.

Although it has neither the elegance nor the deep roots in physics that
the Boltzmann machine learning algorithm has, backprop is more efficient,
and it has made possible much more rapid progress. The classic backprop
paper, coauthored by David Rumelart, Geoffrey Hinton, and Ronald Wil-
liams, appeared in Nature in 1986,* and since then, it has been cited more
than 40,000 times in other research papers. (Half the papers published never
get a single citation, not even from their authors; a paper that receives even
100 citations has made a significant impact on a field, so the backprop
paper was clearly a blockbuster.)

NETtalk

At Princeton in 1984, I heard a talk by a graduate student, Charles Rosen-
berg, on the Boltzmann machine. Although usually the one giving this
talk, I was impressed. Charlie asked if he could visit my lab to work on a
summer project. By the time he arrived in Baltimore, we had switched to
backprop, which made it possible for us to think about working on a real-
world problem rather than the toy demonstration problems I had worked
on previously. Since Charlie was a student of George Miller, a legendary
language expert, we looked around for a Goldilocks problem in language,
one that was neither so difficult that we could not make headway on it
nor so easy that known methods could solve the problem. Linguistics is
a vast field with many subdisciplines: phonology, which concerns the
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pronunciation of words; syntax, which studies how words are arranged in
a sentence; semantics, which is about the meaning of words and sentences;
and pragmatics, which studies how context contributes to the meaning
of language—to name just a few. We decided to start with phonology and
work our way up.

English is a particularly difficult language to pronounce because the
rules are complex and have many exceptions. For example, vowels are
mostly long if the final consonant of a word is followed by a silent “e,” such
as “gave,” and “brave,” but there are exceptions, such as “have,” which
behaves irregularly. I went to the library and found a book in which pho-
nologists had compiled hundreds of pages of these rules and exceptions.
There were often rules within the exceptions and sometimes exceptions
to these exceptional rules. In short, for linguists, it was rules “all the way
down.”® To make matters worse, not everyone pronounces a word the same
way. There are many dialects, each with its own set of rules.

Geoffrey Hinton visited Charlie and me at Johns Hopkins during this
early planning period and told us he thought that English pronunciation
would be too hard to tackle. So we scaled back our ambitions and found a
children’s first reading book that had a hundred words in it. The network
we designed had a window of seven letters, each represented by twenty-
nine units including space and punctuation, for a total of 203 input units.
The goal was to predict the sound of the middle letter in the window. The
input units were connected to eighty hidden units, and the hidden units
projected to twenty-six output units, one for each of the elementary sounds,
called “phonemes,” that are found in English. We called our letter-to-sound
network “NETtalk” (figure 8.2).° There were 18,629 weights in the network,
a large number by the standards of 1986, and impossibly large by the stan-
dards of mathematical statistics of the time. With that many parameters,
we were told that we would overfit the training set, and the network would
not be able to generalize.

As the words marched through the seven-letter window, one letter at a
time, the network assigned a phoneme to the middle letter in the window.
The part of the project that took the longest time was manually aligning
the phoneme with the right letter since the number of letters was not the
same as the number of phonemes in each word. In contrast, the learning
took place before our eyes, getting better and better as the sentences cycled
through the window, and when the learning converged, the performance
of the network was almost perfect on the 100 word training set. Testing
on new words was poor, but because generalization was expected to be
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Figure 8.2

NETtalk feedforward network model. The seven groups of units on the bottom layer
represent letters in a moving window through the text, one letter at a time. The goal
of the network is to predict correctly the sound of the middle letter, which in this
example is the hard “c” phoneme. Each unit on the input layer makes a connection
with all of the hidden units, which in turn project to all of the units on the output
layer. The backprop learning algorithm was used to train the weights using feedback
from a teacher. The correct output pattern is compared with the output of the net-
work, which in this case is the incorrect “k” phoneme. Errors are backpropagated to
the weights on earlier layers.



Backpropagating Errors 115

low on such a small training set, this preliminary result was nonetheless
encouraging.

We then used the 20,000-word Brown Corpus’ and assigned phonemes,
as well as stress marks, to each of letters. The alignment of the letters and
sounds took weeks, but, once the learning started, the network absorbed
the whole corpus in a single night. But how well would it generalize? Beau-
tifully, it turned out. The network had discovered the regularities of English
pronunciation and could recognize the exceptions, all with the same archi-
tecture and learning algorithm. Tiny by today’s standards, our network was
a testament to how efficiently a backprop network could represent Eng-
lish phonology. This was our first hint that how neural networks learned
language—the poster child for symbolic representations—dovetailed with
how humans did.

As it acquired its ability to read aloud, NETtalk first went through a bab-
bling phase, in which it recognized the difference between consonants and
vowels, but assigned the phoneme “b” to all the consonants and the pho-
neme “a” to all the vowels. It sounded like “ba ba” and then after more
learning, it shifted to “ba ga da.” This was eerily similar to the way babies
babble. Then it started to get small words right, and finally, toward the end
of training, we could understand most words.

To test NETtalk on dialect, we found a phonological transcription of
an interview with a young Latino boy from a barrio in Los Angeles. The
trained network re-created the Spanish-accented English of the boy talking
about how, when visiting his grandmother, he would sometimes get candy.
I recorded segments during successive stages of learning by playing the out-
put of NETtalk into a speech synthesizer called “DECtalk” that converted
a string of phoneme labels into audible speech. When I played this tape
during a lecture, the audience was stunned—the network literally spoke for
itself.® This summer project exceeded all our expectations and stood out as
the first real-world application of neural network learning. I appeared with
NETtalk on the Today show in 1986, which was seen by a surprisingly large
audience. Up to this point, neural networks had been an arcane academic
subject. I still meet people who heard about neural networks for the first
time when they watched the show.

Although NETtalk was a powerful demonstration of how a network
could represent some aspects of language, it was not a good model for how
humans acquire reading skills. First, we learn to talk before we learn to read.
Second, we are given a few phonetic rules to help us jumpstart the difficult
task of becoming proficient at reading out loud. But reading aloud quickly
becomes fast pattern recognition, without the need for conscious effort
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to apply rules. Most English speakers will pronounce nonsense words like
“brillig,” “slithy,” and “toves” from Lewis Carroll’s “Jabberwocky” without
effort, the same way they would normal words, as will NETtalk. These pseu-
dowords aren’t in any dictionary but trigger phonemes formed from related
letter patterns in English.

NETtalk made a deep impression on audiences, but now Charlie Rosen-
berg and I needed to analyze the network to figure out how it worked. To do
that, we applied cluster analysis to the activity patterns in the hidden units
and discovered that NETtalk had discovered the same grouping of similar
vowels and consonants that linguists had identified. Mark Seidenberg and
James McClelland used a similar approach as a starting point for a detailed
comparison with the sequence of stages that children go through when
they learn how to read.’

NETtalk had an impact on the world in ways that no one could have
anticipated. As a faculty member of the Thomas C. Jenkins Department
of Biophysics at the Johns Hopkins University, I became interested in the
problem of protein folding. Proteins are string of amino acids that fold up
into complex shapes, endowing them with a wide range of functions, such
as hemoglobin, which binds to oxygen in your red blood cells. Predicting
the 3D shape of a protein from its amino acid sequence is a difficult com-
putational problem that is unsolved for most proteins even with the most
powerful computers. However, there are motifs that are more predictable,
called secondary structures, in which the amino acids wind up in the shape
of a helix, a flat sheet, or a random coil. The algorithms being used by
biophysicists took into account the chemical nature of the different amino
acids, but their predictions were not good enough to help with the 3D fold-
ing problem.

Ning Qian was a first year graduate student in my lab who was one of
the few chosen from all the physics students in China to come to the US
for graduate studies in 1980. We wondered whether NETtalk could be used
to take a string of amino acids and predict protein secondary structures,
assigning alpha helix, a beta sheet, or a random coil to each amino acid.
This is an important problem because the 3D structure of a protein deter-
mines its function. Instead of a string of letters, the input was a string of
amino acids, and instead of predicting phonemes, the network predicted
the secondary structure. The training set was 3D structures determined by
x-ray crystallography. To our surprise, the secondary structure predictions
for new proteins were far better than the best methods based on biophys-
ics.'” This landmark study was the first application of machine learning to
molecular sequences, a field that is now called bioinformatics.
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Another network that learned how to form the past tense of English
verbs became a cause célebre in the world of cognitive psychology as the
rule-based old guard battled it out with the avant-garde PDP Group.'' The
regular way to form the past tense of an English verb is to add the suffix
“ed,” as in forming “trained” from “train.” But there are irregular excep-
tions, such as “ran” from “run.” Neural networks have no problem accom-
modating both the rules and the exceptions. Although this is no longer an
active debate, the fundamental question about the role of explicit repre-
sentation of rules in the brain remains open. Recent experiments on neural
network learning of language support the gradual acquisition of inflec-
tional morphology, consistent with human learning.'? The success of deep
learning with Google Translate and other natural language applications
in capturing the nuances of language further supports the possibility that
brains do not need to use explicit rules for language, even though behavior
might suggest that they do.

Geoffrey Hinton, David Touretzky, and I organized the first Connection-
ist Summer School at Carnegie Mellon in 1986 (figure 8.3), at a time when

Figure 8.3

Students at the 1986 Connectionist Summer School at Carnegie Mellon University.
Geoffrey Hinton is in the first row, third from right, flanked by Terry Sejnowski and
James McClelland. This photo is a who’s who in neural computing today. Neural
networks in the 1980s were a bit of twenty-first-century science in the twentieth

century. Courtesy of Geoffrey Hinton.
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only a few universities had faculty who offered courses on neural networks.
In a skit based on NETtalk, the students lined up in layers, with each stu-
dent representing a unit in the network (although they registered an error
when they propagated the “j” in “Sejnowski” since it is pronounced like “y”
and does not follow the English pattern). Many of those students went on
to make important discoveries of their own and to forge major careers. A
second summer school was held at Carnegie Mellon in 1988 and a third at
UC, San Diego, in 1990. It takes a generation for new ideas to get into the
mainstream. These summer schools were intense experiences and the best

investment we could make in the early days to promote the field.
Neural Networks Reborn

The two volumes of Parallel Distributed Processing (PDP), the now classic
book edited by Rumelhart and McClelland, were published in 1986. It was
the first book to lay out the implications of neural networks and multilayer
learning algorithms for understanding mental and behavioral phenom-
ena. It sold more than 50,000 copies, a best seller by academic standards.
Not only did neural networks trained by backprop have hidden units with
properties resembling those of cortical neurons in the visual system;" the
breakdown patterns exhibited by these networks also had much in com-
mon with human deficits following brain damage.'*

Francis Crick was a member of the PDP Group and came to most of
the group’s meetings and seminars. In the debate on how “biological” the
parallel distributed processing models were, he took the position that they
should be considered demonstrations rather than literal models of the
brain. He wrote a chapter for the PDP book on what was then known about
the cerebral cortex. I wrote a chapter that summarized what we did not
know about the cerebral cortex. If those chapters were written today, both
would be much longer.

There are success stories from the 1980s that are not generally known.
One of the most profitable companies based on neural networks was HNC
Software, Inc., founded by Robert Hecht-Nielsen, which used neural net-
works to prevent credit card fraud. Hecht-Nielsen was in the Electrical and
Computer Engineering Department at UC, San Diego, and taught a popular
course on practical applications of neural networks. Every day, credit cards
are compromised by cybercriminals across the globe. Credit card transac-
tions feed into a roaring river of data, and picking out the suspicious ones
is a daunting task. In the 1980s, humans made the time-sensitive decisions
of whether to approve or deny a given credit card transaction. This led to
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more than $150 billion of fraudulent transactions per year. HNC Software
Inc. used neural network learning algorithms to detect credit card fraud
with much better accuracy than humans, saving credit card companies
many billions of dollars per year. HNC was acquired for $1 billion by Fair
Isaac and Company (FICO) in 2002, famous for issuing credit scores.

There is something magical about watching a network learn as it gets
better and better by taking small steps. It can be a slow process, but if there
are enough training examples and the network is big enough, learning algo-
rithms can find a good representation that generalizes well to new inputs.
When the process is repeated from a randomly chosen set of initial weights,
a different network is learned each time, but all with similar performances.
Many networks can solve the same problem; this has implications for what
we should expect when we are able to reconstruct the complete set of con-
nections for the brains of different individuals. If many networks yield the
same behavior, the key to understanding them is the learning algorithms
used by brains, which should be easier to discover.

Understanding Deep Learning

Whereas, in convex optimization problems, there are no local minima and
convergence is guaranteed to the global minimum, in nonconvex optimi-
zation problems, this is not the case. We were told by optimization experts
that, because learning in networks with hidden units was a nonconvex
optimization problem, we were wasting our time—our network would get
trapped in local minima (figure 8.4). Empirical evidence suggested that
they were wrong. But why? We now know that, in very high-dimensional
spaces, local minima of the cost function are rare until the final stages of
learning. At early stages, almost all directions are downhill, and, on the way
down, there are saddle points, where some directions point up in error and
other dimensions point down. The intuition that networks would get stuck
in local minima is based on solving problems in low-dimensional spaces
where there are fewer directions to escape.

Current deep network models have millions of units and billions of
weights. For statisticians, who traditionally analyze simple models with
only a few parameters so they can prove theorems using small data sets, a
billion-dimensional space was a nightmare. They assured us that, with so
many parameters, we would hopelessly overfit the data: our network would
simply memorize the training data and fail to generalize to new test inputs.
But using regularization techniques, like forcing the weights to decay when
they weren’t doing anything useful, we were able to alleviate overfitting.
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“nonconvex” “convex”

J(8) J(6)

Figure 8.4

Nonconvex and convex cost functions. These graphs plot cost functions, J(6), as a
function of a parameter 6. A convex function has only one minimum (right), a global
minimum that can be reached by moving downhill from any location on the surface.
Imagine you are a skier and always point your skis in the steepest downhill direction.
You are guaranteed to get to the bottom. In contrast, a nonconvex cost function can
have local minima (left), which are traps that prevent the global minimum from be-
ing found by going downhill. As a consequence, nonconvex cost functions are diffi-
cult to optimize. However, this one-dimensional example is misleading. When there
are many parameters (typically millions in a neural network), there can be saddle
points, which are convex up in some dimensions and concave down in others. When
you are at a saddle, there is always a direction to go downhill.

One particularly clever regularization technique, called “dropout,” was
invented by Geoffrey Hinton.'" On every learning epoch, when the gradi-
ent is estimated from a number of training examples and a step is made in
weight space, half the units are randomly cut out from the network—which
means that a different network is trained on every epoch. As a consequence,
there are fewer parameters to train on each epoch, and the resulting network
has fewer dependencies between units than would be the case if the same
large network were trained on every epoch. Dropout decreases the error rate
in deep learning networks by 10 percent, which is a large improvement. In
2009, Netflix conducted an open competition, offering a prize of $1 mil-
lion to the first person who could reduce the error of their recommender
system by 10 percent.'® Almost every graduate student in machine learning
entered the competition. Netflix probably inspired $10 million of research
for the cost of the prize. And deep networks are now a core technology for
online streaming."’

Intriguingly, cortical synapses drop out at a high rate. On every spike
along an input, the typical excitatory synapse in the cortex has a 90 percent
failure rate.'® This is like a baseball team where almost all the players are bat-
ting .100. How can the brain function reliably with such unreliable cortical
synapses? When there are thousands of probabilistic synapses on a neuron,
the variability of their summed activity is relatively low,'” which means
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performance may not be degraded as much as you might imagine. The
benefit for learning with dropout at the level of synapses may outweigh the
cost in reduced accuracy. And since synapses take a lot of energy to operate,
dropout also saves energy. Finally, because the cortex uses probabilities to
compute likely—not certain—outcomes, using probabilistic components is
an efficient way to represent a probability.

However unreliable they may be, cortical synapses are surprisingly pre-
cise in their strength. The sizes of cortical synapses and their corresponding
strengths vary over a factor of 100, and the strengths of single synapses
can be increased or decreased within this range. Working with Kristen Har-
ris, a neuroanatomist at the University of Texas at Austin, my lab recently
reconstructed a small piece of the rat hippocampus, a brain area needed for
forming long-term memories, which contained 450 synapses. Most axon
formed a single synapse on a dendritic branch, but in a handful of cases,
two synapses from a single axon contacted the same dendrite. To our sur-
prise, these were nearly identical in size; from previous studies, we knew
this meant they had the same strength. Much is known about the condi-
tions that lead to changes in the strengths of these synapses, which depend
on the history of input spikes and the corresponding electrical activity of
the dendrite, which was the same for the pair of synapses from the same
axon on the same dendrite. From these observations, we inferred that the
precision with which information is stored in the strengths of synapses
is high, enough to store at least five bits of information.”® That learning
algorithms for deep recurrent networks need only five bits to achieve high
levels of performance may not be a coincidence.”!

The dimensionality of networks in the brain is so high that we do not
even have a good estimate of how high. The total number of synapses in
the cerebral cortex is around a hundred trillion, an astronomically high
upper bound. A human lifetime is no more than a few billions seconds
long. At that rate, you could afford to dedicate a hundred thousand syn-
apses to each second of your life. In practice, neurons tend to have clustered
local connections, such as those within a cortical column of one hundred
thousand neurons connected by a billion synapses. Although this is still a
large number, it is not an astronomical one. Long-range connections are
much less common than local connections because neural wires take up
precious volume and consume a lot of energy.

The number of neurons that represent an object or concept in the cortex
is an important number to pin down. A rough estimate for the number of
synapses needed is about a billion, and the number of neurons needed is
about one hundred thousand, distributed in ten cortical areas,” allowing



122 Chapter 8

some 100,000 separate, noninterfering classes of objects and concepts to
be stored in 100 trillion synapses. In practice, the populations of neurons
representing similar objects are overlapping, which can greatly increase the
capacity of the cortex to represent related objects and relationships between
objects. This capacity is much greater in humans than in other mammals
because of the extraordinary expansion of the associative cortex (at the top
of the sensory and motor hierarchies) in the human brain over the course
of evolution.

The study of probability distributions in high-dimensional spaces was
a relatively unexplored area of statistics in the 1980s. There were a few
statisticians who studied the statistical issues that arise when navigating
high-dimensional spaces and high-dimensional data sets, like Leo Breiman
from Stanford, who found a home in the Neural Information Processing
Systems (NIPS) community. And some from that community, like Michael
Jordan at UC, Berkeley, were recruited to statistics departments. But, for the
most part, machine learning in the era of big data has trod where statisti-
cians feared to go. But it is not enough that we can train large networks to
do amazing things; we also need to analyze and understand how they do
these things. Physicists have taken the lead on this front, using methods
from statistical physics to analyze the properties of learning as the number
of neurons and synapses becomes ever larger.

At the 2017 NIPS Conference in Long Beach, the Test of Time award
was given to Benjamin Recht at UC Berkeley and Ali Rahimi at Google for
their 2007 NIPS paper,” which showed that random features can be an
effective way to improve the performance of networks with one layer of
learned weights, something that Frank Rosenblatt knew empirically for the
perceptron in 1960. The presentation after the award given by Rahimi was
an impassioned defense of rigor in machine learning, and he lamented the
lack of rigor in deep learning, which he derisively referred to as “alchemy.”
I was sitting next to Yann LeCun, who was fuming. In a blog after the
talk Yann wrote: “Criticizing an entire community (and an incredibly suc-
cessful one at that) for practicing ‘alchemy,” simply because our current
theoretical tools haven’t caught up with our practice is dangerous. Why
dangerous? It’s exactly this kind of attitude that lead the ML community
to abandon neural nets for over 10 years, despite ample empirical evidence
that they worked very well in many situations.”** This is a classic scrim-
mage between the scruffy and neat approaches to science. Both are needed
to make progress.
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Limitations of Neural Networks

Although they may give the right answer to a problem, currently, there is
no way to explain how neural networks arrive at that answer. For example,
suppose that a female patient presents in an emergency room with a sharp
pain in her chest. Is this a myocardial infarction, in which case immedi-
ate intervention is needed, or simply a bad case of indigestion? A network
trained to make a diagnosis might be more accurate than the admitting
doctor, but without an explanation for how the network made the deci-
sion, we would be justifiably reluctant to trust it. Doctors also are trained to
follow what amounts to algorithms, series of tests and decision points that
guide them through routine cases. The problem is that there are rare cases
that fall outside the scope of their “algorithms,” whereas a neural network
trained on many more cases, far more than the average doctor will ever see
in a lifetime, might well catch those rare cases. But would you trust the sta-
tistically stronger diagnosis of a neural network with no explanation over
a doctor’s diagnosis with a plausible one? In fact, those doctors who are
highly accurate in making a rare diagnosis have had broad experience, and
most use pattern recognition rather than algorithms.* This is probably so
for the highest-level experts in all fields.

Just as it is possible to train networks to give expert diagnosis, would it
be possible to train networks to give explanations by making them part of
their training sets? This might even improve the diagnosis. The reason this
is problematic is that many of the explanations doctors give are incomplete,
oversimplified, or wrong. Medical practice changes dramatically from one
generation to the next because the complexity of the body greatly exceeds
our current understanding. If we could analyze the internal states of net-
work models to extract causal explanations, this could lead to new insights
and hypotheses that could be tested to advance medicine.

The objection that a neural network is a black box whose conclusions
cannot be understood can also be made of brains, and, indeed, there is
great variability in the decisions made by individuals given the same data.
We really don’t know yet how brains draw inferences from experience. As
shown in chapter 3, conclusions are not always based on logic, and there
are cognitive biases.”* Moreover, the explanations we accept are often noth-
ing more than rationalizations or plausible stories. We cannot exclude the
possibility that some very large generative network will someday start talk-
ing, and we can ask it for explanations. Should we expect better stories and
rationalizations from such a network than those we receive from humans?
Recall that consciousness does not have access to the inner workings of
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brains. Deep learning networks typically provide not one but several lead-
ing predictions in rank order, which gives us some information about the
confidence of a conclusion. Supervised neural networks can only solve
problems that fall within the range of data that were used to train the net-
work. If it has been trained on similar cases or examples, a neural network
should do a fine job at interpolating to novel cases. But if a novel input is
outside the range of training data, extrapolation is perilous. This should
come as no surprise since the same limitation applies to humans; an expert
in physics should not be expected to give good advice on political issues, or
even in an area of physics outside the expert’s expertise. But, as long as the
data set is big enough to encompass the full range of potential inputs, a net-
work’s generalization to new inputs should be good. In practice, humans
tend to use analogies to extrapolate from an understood domain to a new
domain, but these can turn out to be false analogies if the two domains are
fundamentally different.

All neural networks that classify inputs are biased. First, the choice of
classification categories introduces a bias that reflects human bias in how
we chop up the world. For example, it would be useful to train a network
to detect weeds in lawns. But what is weed? One man’s weed is another
man’s wildflower. Classification is a much broader problem that reflects
cultural biases. This ambiguity is compounded by the data sets that are used
to train the network. For example, several companies provide law enforce-
ment agencies with systems that identify criminals based on facial recogni-
tion. There are more false positives among the black faces than white faces
because the databases used to train the networks have many more white
faces, and the more data you have the more accurate you can be.” Database
biases can be corrected by rebalancing the data, but there are inevitably
hidden biases depending on where the data are obtained and what they are
used to decide.”®

Another objection to reliance on neural networks is that they may
optimize profits at the expense of fairness. For example, suppose that an
underrepresented minority applies for a home mortgage and is denied the
loan by a neural network that has been trained on millions of applications.
Inputs to the network include current address and other information that
are highly correlated with being a minority. So even though there is a law
against explicitly discriminating against minorities, the network may be
using this information to implicitly discriminate against them. The prob-
lem here is not with the neural network, but with the cost fun